1. Consider the Lasso problem \(\min_{\beta} \frac{1}{n} \|Y - X\beta\|_2^2 + \lambda \|\beta\|_1 \), where \(\lambda > 0 \) is a tuning parameter.

(a) Let \(\hat{\beta} \) be a minimizer of the Lasso problem with \(j^{th} \) component \(\hat{\beta}_j \). Denote \(X_j \) to be the \(j \)-th column of \(X \). Show that

\[
\begin{cases}
\lambda = n^{-1}X_j^T(Y - X\hat{\beta}) & \text{if } \hat{\beta}_j > 0; \\
\lambda = -n^{-1}X_j^T(Y - X\hat{\beta}) & \text{if } \hat{\beta}_j < 0; \\
\lambda \geq |n^{-1}X_j^T(Y - X\hat{\beta})| & \text{if } \hat{\beta}_j = 0.
\end{cases}
\]

(b) If \(\lambda > \|n^{-1}X^TY\|_\infty \), prove that \(\hat{\beta}_\lambda = 0 \), where \(\hat{\beta}_\lambda \) is the minimizer of the Lasso problem with regularization parameter \(\lambda \).

(c) If \(\hat{\beta}_1 \) and \(\hat{\beta}_2 \) are both minimizers of the Lasso problem, show that they have the same prediction, i.e., \(X\hat{\beta}_1 = X\hat{\beta}_2 \).

Hint: Consider the vector \(\hat{\beta}_\alpha = \alpha\hat{\beta}_1 + (1 - \alpha)\hat{\beta}_2 \) for \(\alpha \in (0, 1) \). Show that \(Q(\hat{\beta}_\alpha) \) does not depend on \(\alpha \) by using the convexity, where \(Q(\beta) = \frac{1}{2n}\|Y - X\beta\|_2^2 + \lambda \|\beta\|_1 \). The same convexity argument entails that the loss \(L(\alpha) = \frac{1}{2n}\|Y - X\hat{\beta}_\alpha\|_2^2 \) does not depend on \(\alpha \) and conclude the result from here.

2. Risk properties of Lasso.

Let \(R_n(\beta) = \|Y - X\beta\|_2^2/n \) and \(R(\beta) = ER_n(\beta) \) be the empirical and theoretical risks, and \(\hat{\beta} = \arg\min_{\|\beta\|_1 \leq c} R_n(\beta) \) be the Lasso estimator which estimates \(\beta_0 = \arg\min_{\|\beta\|_1 \leq c} R(\beta) \).

(a) Consider the in-sample risk \(R_n(\hat{\beta}) \) as an estimator of optimal risk \(R(\beta_0) \). Show that

\[
|R(\beta_0) - R_n(\hat{\beta})| \leq \max_{\|\beta\|_1 \leq c} |R(\beta) - R_n(\beta)| \leq (1 + c)^2 \|\Sigma^* - S^*_n\|_{max},
\]

where \(Z = \begin{pmatrix} Y \\ X \end{pmatrix}, \Sigma^* = E(ZZ^T) \) and \(S^*_n = n^{-1} \sum_{i=1}^n Z_iZ_i^T \).

Hint: Deal with two sides of the inequality separately. For example, \(R(\beta_0) - R_n(\hat{\beta}) = R(\beta_0) - R(\beta_0) + R_n(\beta_0) - R_n(\hat{\beta}) \geq R(\beta_0) - R_n(\beta_0) \).

(b) Suppose that \(\|X\|_\infty \leq b \) and \(|Y| \leq b \) (bounded random variables). Use Hoeffding’s inequality to show \(\|\Sigma^* - S^*_n\|_{max} = O_p(\sqrt{\log p/n}) \).

(c) Consider the lasso of form \(\hat{\beta} = \arg\min \{\frac{1}{2} R_n(\beta) + \lambda \|\beta\|_1 \} \).

If \(\lambda \geq 2n^{-1}X^T(Y - X\beta_0)\|_\infty \), under the restricted eigenvalue condition

\[
\min_{3\|\Delta s_0\|_1 \geq \|\Delta s_0\|_1} n^{-1}\|X\Delta\|_2^2/\|\Delta\|_2^3 \geq a,
\]

show that with \(\hat{\Delta} = \hat{\beta} - \beta_0 \) and \(s = |\text{Supp}(\beta_0)| \),

\[
\|\hat{\Delta}\|_2 \leq 8a^{-1}\sqrt{s}\lambda \quad \text{and} \quad \|\hat{\Delta}\|_1 \leq 32a^{-1}s\lambda.
\]
3. Concentration inequalities.

(a) The random vector \(\varepsilon \in \mathbb{R}^n \) is called \(\sigma \)-sub-Gaussian if \(E \exp (a^T \varepsilon) \leq \exp \left(\|a\|^2 2 / 2 \sigma^2 \right), \forall a \in \mathbb{R}^n \). Show that \(E \varepsilon = 0 \) and \(\text{var}(\varepsilon) \leq \sigma^2 I_n \).

\text{Hint:} Expand exponential functions as infinite series (actually, you only need the condition for \(a \) in a small neighborhood around 0)

(b) Suppose that the random vector \(X - E X \) is \(\sigma \)-sub-Gaussian and \(S_n = 1^T X = \sum_{i=1}^n X_i \). Show that

\[
P \left(n^{-1/2} |S_n - ES_n| \geq t \right) \leq 2 \exp \left(- \frac{t^2}{2\sigma^2} \right), \quad t > 0.
\]

\text{Hint:} Use Chebyshev’s inequality

\[
P \left(n^{-1/2}(S_n - ES_n) \geq t \right) \leq \exp(-xt) E \exp \left(x n^{-1/2}(S_n - ES_n) \right)
\]

and optimize the choice of \(x \) after using the moment generating function of sub-Gaussian distributions.

(c) For \(X \in \mathbb{R}^{n \times p} \) with the \(j \)-th column denoted by \(X_j \in \mathbb{R}^n \), suppose that \(\|X_j\|_2 = n \) for all \(j \), and \(\varepsilon \in \mathbb{R}^n \) is a \(\sigma \)-sub-Gaussian random vector. Show that there exists a constant \(C > 0 \) such that

\[
P \left(\|n^{-1} X^T \varepsilon\|_\infty > \sqrt{2(1 + \delta)} \sigma \sqrt{\frac{\log p}{n}} \right) \leq C p^{-\delta}, \quad \forall \delta > 0.
\]

\text{Hint:} Using the same argument as part (b), we can obtain \(P \{ \|b^T \varepsilon\| \geq t \} \leq 2 \exp \left(- \frac{t^2}{2\sigma^2 \|b\|^2} \right) \). You can use this without proof.

4. This problem intends to show that the gradient decent method for a convex function \(f(\cdot) \) is a member of majorization-minimization algorithms and has a sublinear rate of convergence in terms of function values. From now on, the function \(f(\cdot) \) is convex and let \(x^* \in \text{argmin} f(x) \). Here we implicitly assume the minimum can be attained at some point \(x^* \in \mathbb{R}^p \).

(a) Suppose that \(f''(x) \leq L I_p \) and \(\delta \leq 1 / L \). Show that the quadratic function \(g(x) = f(x_{i-1}) + f'(x_{i-1})^T (x - x_{i-1}) + \frac{1}{2\delta} \|x - x_{i-1}\|^2 \) is a majorization of \(f(x) \) at point \(x_{i-1} \), i.e., \(g(x) \geq f(x) \) for all \(x \) and also \(g(x_{i-1}) = f(x_{i-1}) \).

(b) Show that gradient step \(x_i = x_{i-1} - \delta f'(x_{i-1}) \) is the minimizer of the majorized quadratic function \(g(x) \) and hence the gradient descend method can be regarded as a member of MM-algorithms. Use (a) to show that

\[
f(x_i) \leq g(x_i) = f(x_{i-1}) - \frac{1}{2\delta} \|x_i - x_{i-1}\|^2.
\]

(c) Show that

\[
f(x_i) \leq f(x^*) + \frac{1}{2\delta} (\|x_i - x^*\|^2 - \|x^* - x_{i-1}\|^2).
\]

\text{Hint:} By convexity, \(f(x^*) \geq f(x_{i-1}) + f'(x_{i-1})^T (x^* - x_{i-1}) \) and substitute this into the second part of part (b).
(d) Conclude using (c) that \(f(x_k) - f(x^*) \leq \|x_0 - x^*\|^2/(2k\delta) \), namely gradient descent converges at a sublinear rate. (Note: The gradient descent method converges linearly if \(f(\cdot) \) is strongly convex.)

5. Let us consider the Zillow data again. We drop the first 3 columns ("(empty)", "id", "date") and treat "zipcode" as a factor variable. Now, consider the variables

(a) "bedrooms", "bathrooms", "sqft_living", and "sqft_lot" and their interactions and the remaining 14 variables in the data, including "zipcode". (We can use \texttt{model.matrix} to expand factors into a set of dummy variables.)

(b) Add the following additional variables to (a): \(X_{12} = I(\text{view} == 0) \), \(X_{13} = L^2 \), \(X_{13+i} = (L - \tau_i)^2, i = 1, \ldots, 9 \), where \(\tau_i \) is 10 \(* i \)th percentile and \(L \) is the size of living area ("sqft_living").

Compute and compare out-of-sample \(R^2 \) using ridge regression, Lasso (using R package \texttt{glmnet}) and SCAD (using R package \texttt{ncvreg}) with regularization parameter chosen by 10 fold cross-validation. Set a random seed by \texttt{set.seed(525)} before executing Lasso.