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Abstract

This paper gives a brief overview on the nonparametric techniques that are useful for financial
econometric problems. The problems include estimation and inferences of instantaneous returns
and volatility functions, and estimation of transition densities and state price densities. We
first briefly describe the problems and then outline main techniques and main results. Some
useful probabilistic aspects of diffusion processes are also briefly summarized to facilitate our

presentation and applications.

1 Introduction

Technological invention and trade globalization have brought into a new era of financial markets.
Over the last three decades or so, enormous number of new financial products have been introduced
to meet customers’ demands. An important milestone is that in the year 1973, the world’s first
options exchange opened in Chicago. At the very same year, Black and Scholes (1973) published
their famous paper on option pricing and Merton (1973) launched general equilibrium model for
security prices, two landmarks for modern asset pricing. Since then, the derivative markets have
experienced extraordinary growth. Professionals in finance now routinely use sophisticated sta-
tistical techniques and modern computation power in portfolio management, securities regulation,
proprietary trading, financial consulting and risk management.

Financial econometrics is an active field of integration of finance, economics, probability, statis-

tics, and applied mathematics. This is exemplified in the very book by Campbell et al.(1997).
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Complex financial products pose new challenges on their valuation. Sophisticated stochastic mod-
els have been introduced to capture the salient features of underlying economic variables. Statistical
tools are used to identify parameters of stochastic models and to simulate complex financial sys-
tems. Many pricing formulas require solving a system of differential equations, where techniques in
applied mathematics play a pivotal role. This paper gives an overview on nonparametric techniques
for financial econometrics.

Modern asset pricing theory allows one to value and hedge contingent claims via risk-neutral
valuation, once a model for the dynamics of an underlying state variable is given. There are
many books on mathematical finance. See, for example, Bingham and Kiesel (1998), Steele (2000),
and Duffie (2001). Many of such models have been developed. Most of these stochastic models
are simple and convenient parametric ones to facilitate pricing contingent claims and statistical
estimation. They are not derived from any economics theory and hence can not be expected to fit
all financial data. Thus, while the pricing theory gives spectacularly beautiful formulas when the
underlying dynamics is correctly modeled, it offers little guidance in choosing a correct model nor
validating a specific model. Hence there is always a danger that misspecification of a model leads
to erroneous valuation and hedging. Various extensions to relaxing restrictive assumptions have
been made. Beyond a specific form on a stochastic model, there are infinitely many possibilities.
Nonparametric methods offer a unified and elegant treatment in stochastic modeling.

Nonparametric approaches have recently been introduced to estimate instantaneous return and
volatility function and to estimate transition densities and state price densities. They can also
be applied to examine the extent to which the coefficient functions vary over time. They have
immediate applications to the valuation of bond price and stock options and the management of
investment risks. They can also be employed to answer the questions such as if the geometric
Brownian motion fits certain stock indices, whether the Cox-Ingsoll-Ross model fits financial data,
and if interest rates dynamics evolve with time. Furthermore, based on empirical data, one can also
fit directly the observed option prices with their associate characteristics such as strike price, the
time to maturity, risk-less interest rate, dividend yield and see if the option prices are consistent
with the theoretical ones. Needless to say, nonparametric techniques will play an increasingly
important role in financial econometrics, thanks to the availability of modern computing power.

The paper is organized as follows. We first introduce in section 2 some useful stochastic models
for modeling stock prices and bond yields and then briefly outline some probabilistic aspect of
the model. In Section 3, we review nonparametric techniques used for estimating the drift and
diffusion functions, based on either discretely or continuously observed data. In Section 4, we
outline techniques for estimating state price densities and transition densities. Their applications

in asset pricing and testing for parametric diffusion models are also introduced.



2 Diffusion models

Stochastic diffusion models have been widely used for describing the dynamics of underlying eco-
nomic variables and asset prices. They form the basis of many spectacularly beautiful formulas for
pricing contingent claims. See, for example, the books by Hull (1997), Bingham and Kiesel (1998),
Steele (2000) and Duffie (2001).

2.1 One-factor diffusion models

Let X; be an observed economic variable at time ¢. This can be the prices of a stock or a stock
index, or the yields of a bond. A simple and frequently used stochastic model to describe the
dynamics of the economic variable is to assume that it satisfies the following stochastic differential
equation:

dX, = p(X,)dt + o(X,)dWy, (1)

where {1V} is a standard one-dimensional Brownian motion. The function pu(-) is frequently called

a drift or instantaneous return function and o(-) is referred to as the diffusion or volatility function,

since
lim A7E (X — X X0) = (X)) @)
iimo A Yvar( X Al Xy) = 02(Xy) (3)

The time-homogeneous model (1) contains many famous one-factor models in financial econo-
metrics. The celebrated Black-Scholes option price formula is derived based on the Osborne’s

assumption that the stock price follows the geometric Brownian:
dXy = pXydt + o X dWy. (4)
The model (1) also includes many celebrated models for short-term interest rate. Examples are

VAS: dX: = k(a— Xp)dt + odWy, (5)

CIR: dX; = r(a — Xp)dt + o X2 dW;, (6)

CKLS : dX; = k(a — X;)dt + o X dW, (7)
CIR2: dX,=oX/?dW,, (8)
(9)

AIT:  dX; = (X' 4 o1 + ao Xy + o XP)dt + o X[ dW; 9

introduced respectively by Vasicek (VAS) (1977), Cox et al.(CIR) (1985), Chan et al.(CKLS) (1992),
Cox et al.(1980) and Ait-Sahalia (AIT) (1996b). The first three models contain a linear drift and
different forms of the volatility functions. As the interest rate goes above the mean level «, there
is negative drift that pulls the rate down, while when the interest rate goes below «, there is a
positive force that drives the rate up. Such a property is called “mean reversion”. The AIT model

has nonlinear mean reversion: while interest rates remain in the middle part of their domain, there



is little mean reversion and at the end of the domain, the strong nonlinear mean reversion emerges.
Note that the CIR2 model is closely related to the model used by Ahn and Gao (1999) who model
the interest by Y; = X~ ! in which the X; follows the CIR model. An application of the Itd’s
formula yields:

3/2

dY; = Yi{k — (0 — ka)Y; }dt + oY, 2dW;.

Economic conditions vary over time. Thus, it is reasonable to expect that the instantaneous
return and volatility depend on both time and price level for a given state variable, such as stock
prices and bond yields. This leads to a further generalization of model (1) to allow the coefficients
to depend on time t:

dX; = u(t, Xy)dt + o(t, X;)dW,. (10)

Since only a trajectory of the process is observed, there is no sufficient information to estimate
the bivariate functions in (10) without further restrictions. A subclass of models where coefficient

functions are estimable is
dX; = {ao(t) + a1 (t)g(Xy)} dt + Bo(t) (X)) aw, (11)
for some functions ay, a1, g, Bo, f1 and h. A useful specification of model (10) is
dX¢ = {ao(t) + a1 ()X} dt + Go() XM aw. (12)

This is an extension of the CKLS model by allowing the coefficients to depend on time and was
introduced and studied by Fan et al.(2003). Models (11) and (12) include many commonly-used
time-varying models for the yields of bonds, introduced by Ho and Lee (HL) (1986), Hull and White
(HW) (1990), Black, Derman and Toy (BDT) (1990), and Black and Karasinski (BK) (1991). They

assume respectively the following forms:

HL:  dX; = p(t)dt + o(t) dW;,
HW:  dX; = {ao(t) + a1 () X} dt + o(t) X" dWy, i =0 or 0.5,

BDT: dX; = {Oél(t)Xt + OéQ(t)Xt IOg(Xt)} dt + ,Bo(t)Xt AW,

_ dlog{f(t)}

BK: dXt = {041 (t)Xt + Oég(t)Xt log(Xt)} dt + ﬁo(t)Xt th, with Oég(t) dt

The experience in Fan et al.(2003) and other studies of the varying coefficient models (see e.g.,
Cleveland et al. 1991, Chen and Tsay 1993, Hastie and Tibshirani, 1993, Hoover et al.1998, Cai et
al.2000) shows that coefficient functions in (12) can not be estimated reliably due to the collinearity

effect in local estimation. This leads Fan et al.(2003) to introduce the semiparametric model:
dX; = {ao(t) + a1 () X} dt + Bo(t) X7 AW, (13)

a generalization of the HW model.



2.2 Existence of Solution

A question arises naturally when there exists a solution to the stochastic differential equation (SDE)
(10). Such a program was first carried out by 1t6(1942, 1946). For SDE (10), there are two different
meanings of solutions: strong solution and weak solution. See Sections 5.2(page 285) and 5.3 (page
300) of Karatzas and Shreve (1991). Basically, for a given initial condition £, a strong solution
requires that X; is determined completely by the information up to time ¢, namely, the information
contained in the driving Brownian motion {W;,0 < s < ¢} and the initial condition £. The weak
solutions relax the above requirement.

Under the Lipchitz and linear growth conditions:

ety 2) = pt, )l + llo(t2) = ot )| < K|z =yl

lu(t, 2)I? + llo(t, 2)|* < K (1 +||=]*)

for every t,z and y, for every ¢ that is independent of {WW}, there exists a strong solution of
equation (10). Such a solution is unique. See Theorem 2.9 of Karatzas and Shreve (1991). The
above result holds for the process in d-dimensional Euclidean space.

For one-dimensional time-homogeneous diffusion process (1), weaker conditions can be obtained.
Let us recall the Itd’s formula: For process X; in (10), for a sufficiently regular function f [see e.g.
page 153 of Karatzas and Shreve (1991)],

2
df (Xi,t) = {af(;t’w + %8 f;ﬁt’t)UQ(Xt,t)}dtJr

af(Xt7 t)
0

X

dXz.

By an application of It6’s formula, for the process X; in (1), the process Y; = p(X;) satisfies

1
dY, = (up’ + EUQp//)dt + op'dB;.

Hence, the drift term can be removed if one takes p to satisfy

1
/Jpl + 5Uzpll -0

or
x
() = cexp {2 [“u(w)/o*(w)du
0
for an arbitrary constant c. Note that if o is strictly positive and differentiable, the process (1) can
also be transformed to have unit diffusion via V; = [~ o(u) 1du = G(Y;) for some nonnegative

lower limit, which satisfies
dYy = py (Yy)dt + dWy, (14)

where py (y) = (/o — 20')(G71(y)). Thus, we can consider without loss of generality that the
drift in (1) is zero. Let

Z(o)={x:0(x) =0} and I(0) = {m : /xx—i- o(y)2dy = oo} .

5



Note that if o(z) is continuous, then I(c) C N(o). Engelbert and Schmidt (1984) prove that
equation (1) with ¢ = 0 has a weak solution for every initial distribution if and only if I(c) C N(o).
In that case, the uniqueness in law holds for every initial distribution if and only if I(c) = N (o).
See also Theorem 5.5.4 (page 333) of Karatzas and Shreve (1991) and Theorem 23.1 of Kallenberg
(2001).

2.3 Markovian property and transition density

According to Theorem 5.4.20 (page 322) of Karatzas and Shreve (1991), the solution X} to equation
(1) is Markovian, provided that the coefficient functions b and o are bounded on compact subsets.
Let pi(y|z) be the transition density: the conditional density of X1y = y given X; = z. The

transition density must satisfy the forward Kolmogorov equation

2
Som(ule) = 3 s P m(ulo)] - 5 () (ulo)

and backward Kolmogorov equation

0 102 0
i Wle) = 5550 @ p(yle)] + o [u(@)pe(yl2))-
See page 282 of Karatzas and Shreve (1991).

In many financial applications, the process X; is nonnegative. For simplicity, we assume that
the range of X is (0,00). Ait-Sahalia (1999, 2002) derives the Hermit expansion of the transition
density around a normal density function. As discussed in §2.2, we assume without loss of generality
(14). For small ¢, the transition density p;(y|yo) of the Markov process {Y;} can be approximated,
up to order K, by

y K
V2 exp( [ py (w)dw)o((y — yo) /1) > ewlylyo)t* /R, (15)
Yo k=0

(K)(

e (Ylyo) =t~

where ¢(z) is the density function of the standard normal distribution, ¢o(y|yo) = 1 and

CﬂM%)Zﬂy—mY”é%w—walX{M%wkjwaw+;5%jdwwwﬁmﬂmm
where Ay (y) = —(15-(y) + 14 (y)) /2. Note that
QMWZ—mi%ﬁ;WWﬂmﬂw®—w%ﬁ

By the change-of-variable formula, the transition density of the process (1) can be approximated
by

A (@) = p") (ylyo) /o (), (16)

where y = — [ o(u) " !du. Ait-Sahalia (1999) gives the explicit approximations for commonly used
models (4), (5), (6) and (7) and evaluates their accuracies. A closed-form approximation of the

transition density for the time-inhomogeneous model (10) is given by Egorov et al.(2003).



Under the linear growth and Lipchitz’s conditions, and additional conditions on the boundary
behavior of functions p and o, the solution to equation (1) is positive and ergodic. One sufficient
condition is at the left boundary, [, s(x)dz = +oc and at the right boundary, [T s(x)dz = +oo0,

and

o0

/ o %(x)/s(z)dr < oo,

0
where s(z) = exp(—2 [ u(y)o~2(y)dy) is the derivative of the scale function of the diffusion process
(1). See §5.7 of Rogers and Williams (1987). Let f(z) be the invariant density. Multiplying both
sides of the forward Kolmogorov equation by a factor of f(z) and integrating it out with respect
to = and noticing [ pi(y|x) f(z)dz = f(y), we have

2
3 57T W)] = 5 )W) =0

Solving this differential equation yields

f(a) =2C0r (@) exp(2 [ nly)o~(w)dy), (17)

where Cj is a normalizing constant and the lower limit of the integral does not matter. If the initial
distribution is taken from the invariant density, then the process {X;} is stationary. Let H; be the
operator defined by

(Hef)(z) = E(f(X¢)|Xo =1x), z€R, (18)

where f is a Borel measurable bounded function on R. The operator satisfies the Feller semigroup
property: for s,t > 0, Hsyy = HsH; = H H;.

A stationary process X; is said to satisfy the condition Ga(s,a) of Rosenblatt (1970) if there
exists an s such that

= s U oy
(FEf(X)=0y  EfA(X)
namely the operator is a contraction. As a consequence of the semigroup and contraction properties,
the condition G implies (Banon, 1977) that for any ¢ € [0,00), ||Hy|| < a!/*~1. The latter implies,
by the Cauchy-Schwartz inequality, that
p(t) = sup corr(g1(Xo), g2(Xy)) < o>, (19)

91,92

That is, the p-mixing coefficient decays exponentially fast. Banon and Nguyen (1981) show further
that for stationary Markov process, p(t) — 0 is equivalent to (19).

2.4 Valuation of contingent claims

An important application of SDE is the pricing of financial derivatives, such as options and bonds.
It forms beautiful modern asset pricing theory and provides useful guidances in practice. Hull
(1997) and Duffie (2001) offer very nice introduction to the field.



The simplest financial derivative is probably the European call option. A call option is the right
to buy an asset for a certain price K (strike price) before or at expiration time 7. A put option
gives the right to sell an asset for a certain price K (strike price) before or at expiration. European
options allow option holders to exercise only at maturity, while American options can be exercised
at any time before expiration. Most stock options are American, while options on stock indices
are European. The pay-off for a European call option is (X7 — K)4, where X7 is the price of the
asset at expiration 7. A European put option, on the other hand, has pay-off (K — Xp),. There
are many other exotic options such as Asian options, look-back options and barrier options, which
have different pay-off functions. See Chapter 18 of Hull (1997).

Suppose that the asset price satisfies the SDE (10) and there is a riskless investment alternative
such as bond which earns compounding rate of interest r;. Suppose that the underlying asset pays

no dividend. Let 3; be the value of such an asset. Then, with initial investment [,

t
B = B exp(/o rsds).

Suppose that the probability measure ) that is equivalent to the original probability measure P,
namely P(A) = 0 if and only if Q(A) = 0. The measure @ is called an equivalent martingale
measure for the deflated price processes of given securities if these processes are martingales with
respect to ). An equivalent martingale measure is also referred to as a “risk-neutral” measure if
the deflater is the bond price process. See Chapter 6 of Duffie (2001).

When the markets are dynamically complete, the price of the derivative security with payoff

U(X7) with initial price Xo = xg is
T
Po=exp(= [ ruds) B2(W(X1)|Xo = x0) (20)

where @ is the equivalent martingale measure for the deflated price process X;/3;. Namely, it is
the discounted value of the expected pay-off in the risk neutral world.
Suppose that the price process follows GBM (4) and the risk-free rate r is constant. Then, it is

easy to show that under the measure ), the price process follows
dX; = rXidt + o X dWy
and by an application of the It6 formula,
log X; —log Xo = (r — 02 /2)t + o*W,. (21)

Note that given the initial price Xg, the price follows a log-normal distribution. Evaluation of the
expectation of (20) for the European call option ¥(X7) = (X7 —K)4, one obtains the Black-Scholes
(1973) option pricing formula:

PO = xgq)(dl) — KeXp(—TT)(I)(dQ),

where d; = {log(zo/K) + (r 4+ 0?/2)T}HovV/T} " and dy = dy — ov/T.



2.5 Simulation of stochastic models

Simulation methods provide useful tools for valuation of financial derivatives and other financial
instruments, when analytic formulas are hard to obtain. They also provide useful tools for assessing
performance of statistical methods.

The simplest method is perhaps the Euler scheme. The SDE (10) is approximated as
Xt+A = Xt + ,U,(t, Xt)A + O’(t7 Xt>A1/2€t7 (22)

where {e;} is a sequence of independent random variables with the standard normal distribution.
The time unit is usually a year. Thus, the monthly, weekly and daily data correspond, respectively,
to A =1/12,1/52, and 1/252 (there are approximately 252 trading days per year). Given an initial
value, one can recursively apply (22) to obtain a sequence of simulated data {X;a,j =0,1,2---}.
The approximation error can be reduced if one uses a smaller step size A/M for a given integer
M to obtain first a more detailed sequence {X;a/ps,5 = 0,1,---} and then takes the subsequence
{Xja,7=0,1,2---}. Since the step size A/M is smaller, the approximation (22) is more accurate.
However, the computational cost is about a factor of M higher.

The Euler scheme has convergence rate A~1/2, which is called strong order 0.5 approximation by
Kloeden et al.(1996). The higher order approximations can be obtained by the It6-Taylor expansion

(see Schurz, 2000, page 242). In particular, a strong order-one approximation is given by
1
Xipa = Xo+ p(t, Xe)A + o, Xi) A e, + AR OLA Xe)Afef -1}, (23)

where o/,(t, z) is the partial derivative function with respect to z. For the time-homogeneous model

(1), an alternative form, without evaluating the derivative function, is
1
Xipa = Xo+ p(X)A + S{o(X0) + o (X + p(X0)A + o(X) A2 )V AV 2,

See (3.14) of Kloeden et al.(1996). More numerical methods can be found in Kloeden and Platen
(1995).

The exact simulation method is available if one can simulate the data from the transition density.
Given the current value X; = ¢, one draws X, from the transition density pa(-|zo). The initial
condition can either be fixed at a given value or be generated from the invariant density (17). In
the latter case, the generated sequence is stationary.

For GBM, one can generate the sequence from the explicit solution (21), where the Brownian mo-
tion can be simulated from independent Gaussian increments. The conditional density of Vascicek’s
model (5) is Gaussian with mean a+(zg—a) exp(—xA) and variance 0% = o%(1—exp(—2xA))/(2k).
Indeed, the solution to the SDE (5) is

t
Xt =a+ (Xo — a)exp(—~t) + Jexp(—Q/{t)/ exp(st)dWs.
0

By (17), one can easily see that its invariant density is Gaussian with mean « and variance 0'2A.

Generate Xg from the invariant density. With X, generate XA from the normal distribution
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Figure 1: Simulated trajectories (multiplied by 100) using the Euler approximation and the strong
order-one approximation for a CIR model. Top panel: solid-curve corresponds to the Euler ap-
proximation and the dashed curve is based on the order-one approximation. Botton panel: The
difference between the order-one scheme and the Euler scheme.

with mean o + (X — a) exp(—~A) and variance 0. With Xa, we generate Xoa from o + (Xa —
a) exp(—kA) and variance O'ZA. Repeat this process until we obtain the desired length of the process.

For the CIR model (6), provided that ¢ = 2ka/02 —1 > 0 (a sufficient condition for X; > 0), the
transition density is given by pa(y|z) = cexp(—u — v)(v/u)?/? with ¢ = 2k/{c%(1 — exp(—rA))},

u = cxgexp(kA), v = cx and

wo = (5) G ()

i=0

is the modified Bessel function of the first kind of order ¢. This distribution is often referred to as
the noncentral y? distribution. That is, given X; = g, 2c¢X¢y A has a noncentral x? distribution
with degrees of freedom 2¢+2 and noncentrality parameter 2u. The invariant density is the Gamma
distribution with shape parameter ¢ + 1 and the scale parameter o2/ (2k).

As an illustration, we consider the CIR model (6) with parameters x = 0.21459, a = 0.08571,
o0 =0.07830 and A = 1/12. The model parameters are taken from Chapman and Pearson (2000).
We simulated 1000 monthly data using both the Euler scheme (22) and strong order-one approxi-
mation (23) with the same random shocks. Figure 1 depicts one of their trajectories. The difference
is negligible. This is in line with the observations made by Stanton (1997) that as long as data
are sampled monthly or more frequently, the errors introduced by using the Euler approximation

is very small for stochastic dynamics that are similar to the CIR model.

10



3 Estimation of return and volatility functions

There are a large literature on the estimation of the return and volatility functions. Early references
include Pham (1981) and Prakasa Rao (1985). Some studies are based on continuously observed
data, while others are based on discretely observed data. For the latter, some regard A tending to

zero, while others regard A fixed. We briefly introduce some of the ideas.

3.1 Discretely observed data

Suppose that we have a sample {X;a,7 =0,---,n} from model (1). Then, the likelihood function,

under the stationary condition, is

log f(Xo) + Y _log pa(XialXi—1)a)- (24)
i=1

If the functions p and o are parameterized and the explicit form of the transition density is avail-
able, one can apply the maximum likelihood estimator. See, for example, Ait-Sahalia (2002) and
references therein. For nonparametric estimation, the explicit form of the transition density is not

available. Thus, a commonly-used technique is to rely on the Euler approximation scheme (22).
Let Yia = AN X (41 — Xia) and Zia = A7 (X(j11)a — Xia)?. Then,

E(Y1A|XZA) = H(XiA) + O(A), and E(ZIA|X¢A) = 0'2(X1A) + O(A).

Thus, u(-) and o2(-) can be approximately regarded as the regression functions of Y;an and Z;a
on X;a, respectively. Stanton (1997) applies kernel regression (Wand and Jones, 1995; Simonoff,
1996) to estimate the return and volatility functions. Let K(-) be a kernel function and h be a

bandwidth. Stanton’s estimators are given by

Y1y YiaKn(Xia — @) Yico ZinKn(Xia — )

i Kn(Xia — 1) Yo Kn(Xia —x)
where Kj,(u) = h~ K (u/h) is a rescaled kernel. Independently, Fan and Yao (1998) apply the local
linear technique (see §3.2 Fan and Gijbels, 1996 and §6.3 Fan and Yao 2003) to estimate the return

, and &%(z) =

i) =

and volatility functions, under a slightly different setup. The local linear estimator (Fan, 1992) is

given by

ﬂ($) _ Z?;Ol Kh(X’L'A - -T) ZASn 2(56) Z? 01 YAKh(XzA — I)(XzA — :E)Sn,l(fb)
n,2(2)Sn0(x) = Spa () ’

(25)

where S, j(z) = Y15 Kn(Xia — 2)(Xia — x)7, for j = 0,1 and 2. Further, Fan and Yao (1998)
use the squared residuals
AN (XA — Xia — i(Xia)A)?

rather than Z;a to estimate the volatility function. They show further that the conditional variance

function can be estimated as well as if the conditional mean function is known in advance.
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Figure 2: Nonparametric estimates of volatility based on orders 1 and 2 differences. The bars
represent two standard deviations above and below the estimated volatility. Top panel: order 1 fit.
Botton panel: order 2 fit.

Stanton (1997) derives higher order approximation scheme up to order 3. He suggested that
higher order approximations must outperform lower order approximations. To verify such a claim,

Fan and Zhang (2003) derive the following order k approximation scheme:
E(YAlXia) = n(Xia) + O(AY), and B(Zj5|Xia) = 0*(Xia) + O(AF), (26)

where with ay, ; = (=1)7+t (I;)/Ja

k k
Via =AY ap i {Xirja — Xia} and Ziy = A " ap j{{X (i1 5a — Xia )}
j=1 j=1
While higher order approximations give better approximation errors, it is surprising that we have

to pay a huge premium for variance inflation. Fan and Zhang (2003) show that

var(Yi | Xia = z0) = o%(xo)Vi(k)A™H{1+0(A)},
VaI‘(Z:A’XiA = 1‘0) = 204(x0)V2(k){1 + O(A)}

The variance inflation factors Vi(k) and Va(k) are explicitly given by Fan and Zhang (2003) and

demonstrated to escalate exponentially fast (as k gets large). For example,
Vi(l) =1,V1(2) = 2.5,V1(3) = 4.83,V1(4) = 9.25, V1 (5) = 18.95,

while
Vo(1) = 1,V52(2) = 3,V2(3) = 8,Va(4) = 21.66, Va(5) = 61.50.

These theoretical results are also verified via empirical simulations in Fan and Zhang (2003). There-
fore, the higher order difference methods should not be used unless the sampling interval is very
wide (e.g. bi-annual data). It remains open whether it is possible to estimate the return and
the volatility functions, without serious inflating the variance, with other higher approximation
schemes.

As an illustration, we take the yields of the two-year Treasury notes from June 4, 1976 to March

7, 2003 with weekly frequency. Figure 2 presents nonparametric estimated volatility function based
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orders £k = 1 and k£ = 2 approximations. The local linear fit is employed with the Epanechnikov
kernel and bandwidth h = 0.35. It is evidenced that the order 2 approximation has higher variance
than the order 1 approximation. In fact, the magnitude of variance inflation is in line with the
theoretical result: the increase of the standard deviation from order 1 approximation to order 2
approximation is v/3.

Stanton (1997) applies his kernel estimator to a Treasury’s bill data set and observes nonlinear
return function in his nonparametric estimates, particularly in region where the interest rate is high
(over 14%, say). This led him to postulate the hypothesis that the return functions of short-term
rates are nonlinear. Chapman and Pearson (2000) studied the finite sample properties of Stanton’s
estimator. By applying his procedure to the CIR model, they found that the Stanton’s procedure
produces spurious nonlinearity, due to the boundary effect and the mean reversion. Fan and Zhang
(2003) develop a formal procedure, based on the generalized likelihood ratio (GLR) test of Fan et
al.(2001), for checking whether the return and volatility functions possess certain parametric forms.

An alternative approach for discretely observed data is via a spectral analysis of the operator
Ha = exp(AL), where the infinitesimal operator L is defined as

o’(2)

21 @) + (@) f @)

Lf(x) =

By It6’s formula, the operator L has the property:
Li(@) = lim 67 [B{f(Xe4s)| X, = 2} — f(2)].
The operator Ha is the transition operator in that [see also (18)]
Haf(z) = E{f(Xa)|Xo = z}.

For each given f, the above is a nonparametric regression problem and can be consistently estimated
for fixed A (low-frequency data). The works of Hansen and Scheinkman (1995), Hansen et al.(1998)
and Kessler and Sgrensen (1999) consist of the following idea. The first step is to estimate the
transition operator from the data. From the transition operator, one can identify the infinitesimal
operator L and hence the functions u(-) and o(-). Gobel et al.(2002) derive the optimal rate of
convergence for such a scheme, using a wavelet basis. In particular, they show that for fixed A, the
optimal rates of convergence for 1 and o are of orders O(n=*/(2+5)) and O(n=/(25+3))  respectively,
where s is the degree of smoothness of i and o.

Various discretization schemes and estimation methods have been proposed for the case with
high frequency data over a long time horizon. More precisely, the studies are under the assumptions
that A, — 0 and nA, — oco. See for example, Dacunha-Castelle and Florens (1986), Yoshida
(1992), Kessler (1997), Arfi (1998), Gobet (2003) and references therein.

There is a large statistical literature on estimating the mean and variance functions. See the
books by Wand and Jones (1995), Fan and Gijbels (1996), Simonoff (1996) and Fan and Yao (2003).

In particular, §8.7 of Fan and Yao (2003) give various methods for estimating the conditional

13



variance function. For the estimation of constant variance with nonparametric regression function,
Rice (1984), Gasser et al.(1986) and Hall et al.(1990) proposed various root-n consistent estimators.
For the case where the conditional variance function is not constant, see Miiller and Stadtmiiller
(1987, 1993), Hall and Carroll (1989), Ruppert et al.(1997) and Hérdle and Tsybakov (1997).

3.2 Time-dependent model

The time dependent model (12) was introduced to accommodate the economy change over time.
The coefficient functions in (12) are assumed to be slow time-varying and smooth. Nonparametric
techniques can be applied to estimate these coefficient functions. See Fan et al.(2003).

We first estimate the coefficient functions ag(¢) and a(t). For each given time ¢(, approximate
the coefficient functions locally by constants: a(t) ~ a and ((t) = b for ¢ in a neighborhood of .

Using the Euler approximation (22), we run a local regression: Minimize

I
—

n

(Yia —a — bX;n)? Kp(iA — tg) (27)

i
o

with respect to @ and b. This results in an estimate &o(tg) = @ and G4 (tg) = b, where @ and b are
minimizers of the local regression (27). Fan et al.(2003) suggest using a one-sided kernel such as
K(u) = (1—u?)I(—1 < u < 0) so that only the historical data in the time interval (to—h, to) are used
in the above local regression. This facilitates forecasting and bandwidth selection. Our experience
shows that there is not significant difference between nonparametric fitting with one-sided and two-
sided kernels. We opt for local constant approximations instead of local linear approximations for
estimating time varying functions, since the local linear fit can create artificial albeit insignificant
linear trends when the underlying functions ag(t) and «j(t) are indeed time-independent.

We now turn to estimate the coefficient functions in the volatility via the pseudo-likelihood
method. Let

Ey = A"Y2{Xa — Xy — (Go(t) + a1 (£) X)) A}

be the normalized residuals. Then, by (12) and (22), we have
By ~ Bo(t) X We,. (28)

The conditional log-likelihood of E, given X, is, up to a location and a scale constant, approximately
expressed as
E}
x 261
gox™

Using local constant approximations and incorporating the kernel weight, we obtain the local

—log{B2 ()X} —

pseudo-likelihood at a time point tg:

n—1 2
£(Bo, Brsto) = Z Kn(iA — 1) (10g(50 261) + 7E2%5 ) . (29)
=0 ﬁgX '
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Maximizing (29) with respect to the local parameters 3y and 31, we obtain the estimates Bo(to) = Bg
and Bl(to) = 31. This type of the local pseudo-likelihood method is related to the generalized
method of moments of Hansen (1982), and the ideas of Florens-Zmirou (1993) and Genon-Catalot
and Jacod (1993).

Since coefficient functions in both the return and volatility functions are estimated using only
historical data, their bandwidths can be selected based on a form of the average prediction error and
the maximum likelihood method. See Fan et al.(2003) for details. The local least-squares regression
can also be applied to estimate the coefficient functions Gy(t) and (1(t) via the transformed model
[see (28)]

log(B2) ~ 2log fo(t) + B (1) log(X2) + log(c2),

but we do not pursue along this direction, since the local least-squares estimate is known to be
inefficient in the likelihood context and the exponentiation of an estimated coefficient function of
log Bo(t) is unstable.

A question arises naturally if the coefficients in model (12) are really time-varying. This amounts
for example to testing Hy : Bo(t) = Bo and F1(t) = 1. Based on the GLR technique, Fan et al.(2003)
proposed a formal test for this kind of problems.

The coefficient functions in the semiparametric model (13) can also be estimated by using the

profile pseudo-likelihood method. For each given (31, by maximizing (29) with respect to [y, we

obtain ) )
B2(to; B1) = ST K (iA - to)EEAXZ-A\%/ DKy (iA — to). (30)
1=0 1=0

Now the coefficient 31 can be obtained by maximizing the pseudo-likelihood [compare with (29)]

n—1

2
0B = — log{ B2 (iA; 20y Fia :
(/61) ; <Og{/60(1’ 761)X1A }+ﬂ§(ZA,ﬂ1)X22Aﬁ1>

Note that £ is estimated by using all the data points, while Bo(t) = Bo(t; Bl) is estimated by using
only the local data points. See Fan et al.(2003) for details.

For other nonparametric methods of estimating of volatility in time inhomogeneous models, see
Hardle et al.(2003) and Mercurio and Spokoiny (2003). Their methods are based on model (13)
with 81 = 0 and aq(t) = 0.

3.3 Continuously observed data

The case with continuously observed data assumes that the process {X;} is fully observable up
to time T and asymptotic studies assume that 7" — oo, an infinite time horizon. Let us assume
again that the observed process {X;} follows SDE (1). In this case, 0%(X;) is the derivative of the
quadratic variation process of X; and hence is known up to time 7. By (17), estimating the drift

function p(z) is equivalent to estimating the invariant density f. In fact,
wa) = [o*(@) f(@))'/[2f (x)]. (31)
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Figure 3: (a) Lag 1 scatterplot of the two-year Treasury note data. (b) Lag 1 scatterplot of those
data falling in the neighborhood 8% =+ 0.2%. The number in the scatterplot shows the indices of
the data falling in the neighborhood. (c) Kernel density estimate of the invariant density.

The kernel density estimate for the invariant density is

n

f@)=n"Y Kp(Xia — ), (32)
i=1

based on the discrete data {X;a,i = 1,---,n} with n = T/A. In pricing the derivatives of

interest rates, Ait-Sahalia (1996a) assumed ju(z) = k(a — z). Using f and estimated & and o

from a least-squares method, he applied (17) to estimate o(-), using discretely observed data:

6%(z) = 2, fi(uw) f*(u)du/ f*(x). He further established the asymptotic normality of such an

estimate.

Before proceeding to the continuously observed data, we would like to note that nonparametric
estimates use essentially only local data. The dependence of the local data is significantly weakened
and hence many results on nonparametric estimates for independent data continue to hold for
dependent data, as long as their mixing coefficients decay sufficiently fast. This can be understood
graphically in Figure 3. Figure 3(a) shows that there is very strong serial correlation of the yields
of the two-year treasury notes. However, this correlation is significantly weakened for the local
data in the neighborhood of 8% + 0.2%. In fact, as detailed in Figure 3(b), the indices of the data
that fall in the local window are quite far apart. This in terms imply the week dependence for the
data in the local window, i.e. “whitening by windowing”. See §5.4 of Fan and Yao (2003) and Hart

(1996) for further details. The effect of dependence structure on the kernel density estimation was
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thoroughly studied by Claeskens and Hall (2002).

When A — 0, the summation in (32) converges to

flz)=1T7" /OT Kn(X; — x)dt. (33)

This forms a kernel density estimate of the invariant density based on the continuously observed
data. Thus, an estimator for p(z) can be obtained by substituting f(z) into (31). Such an ap-
proach has been employed by Kutoyants (1998) and Dalalyan and Kutoyants (2000, 2003). They
established sharp asymptotic minimax risk for estimating the invariant density f and its derivative,
as well as the drift function p. In particular, the functions f, f’ and u can be estimated with rate
T2 7-28/(2s+1) apd T—2/(2s+1) respectively, where s is the degree of smoothness of u. These
are the optimal rates of convergence.

Spokoiny (2000) applies the local linear estimator to estimate the drift function. By taking the
limit as A — 0, the estimator in (25) converges to
aa) = 2@ Jo Kn(Xi —2)dX; — Si(x) Jy Kn(Xi —2)(X; — z)dX,

So(z)So(x) — Si(x)?

(34)

where Sj(z) = [ Kn(X; — x)(X; — 2)’dt. Spokoiny (2000) shows that this estimator attains
the optimal rate of convergence. He established further a data-driven bandwidth such that the
estimator (34) attains adaptive minimax rates.

The above local linear estimator can be derived directly from the local modeling technique (Fan
and Gijbels, 1996). Note that

E{/OTf(Xt)th— 2/0T f(Xt)dXt} / w(Xy)) dt—/ p(Xy)2dt

is minimized at f = p. Thus, approximating f(X;) locally by f(x) + f'(x)(X; — z) for X; around

x, one would minimize
T T
/ {0+ b(X; — 2))2Kp (X, — 2)dt — 2 / {a+b(X; — 2)} Kn(X, — 2)dX, (35)
0 0

with respect to a and b. Minimizing (35) results in the same estimator as (34).

4 Estimation of state price densities and transition densities

State-price density (SPD) is the probability density of the value of an asset under the risk-neutral
world (20) [see Cox and Ross (1976)] or equivalent martingale measure (Harrison and Kreps, 1979).
It is directly related to the pricing of financial derivatives. It is the transition density of X given
Xop = xg under the equivalent martingale (). The SPD does not depend on the pay-off function and
hence it can be used to evaluate other illiquid derivatives, once it is estimated from more liquid
derivatives. The transition density characterizes the probability law of a Markovian process and

hence is useful for validating Markovian properties and parametric models.
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4.1 Estimation of state price density

For some specific models, the state price density can be formed explicitly. For example, for the
GBM (4) with a constant risk-free rate r, according to (21), the SPD is log-normal, with mean
log zg + (r — 02)/(2T) and variance o2.
Assume that the SPD f* exists. Then, the European call option can be expressed as
T o0
C= exp(—/o rsds)/ (x — K)f*(x)dx.

K

See (20) (we have changed the notation from P to C' to emphasize the price of the European call
option). Hence,
T 0*C

fH(K) = exp(/0 rsds)m. (36)
This was observed by Breeden and Litzenberger (1978). Thus, the state price density can be
estimated from the European call options with different strike prices. With the estimated state
price density, one can price new or less-liquid securities such as over the counter derivatives or
nontraded options.

In general, the price of an European call option depends on the current stock price S, the strike
price K, the time to maturity 7', the risk-free interest rate r and yield rate §. It can be written as
C(S,K,T,r,9). The exact form of C, in general, is hard to determine. Based on historical data
{(Cs, Si, Ki, Ty, 74,04),4 = 1,---,n}, where C; is the i*" traded-option price with associated charac-
teristics (S;, K;, T;,7i, 0;), Ait-Sahalia and Lo (1998) fit the following nonparametric regression

Ci =C(Si, K, T;, 14, 6;) + €

to obtain an estimate of the function C' and hence the SPD f*.

Due to the curse of dimensionality (see §7.1 of Fan and Gijbels, 1996), the five dimensional
nonparametric function can not be estimated well with practical range of sample sizes. Ait-Sahalia
and Lo (1998) realized that and proposed a few dimensionality reduction methods. First, by
assuming that the option price depends only on the futures price F' = Sexp((r — 0)T), namely,

C(S,K,T,r,6)=C(F,K,T,r)

(The Black-Scholes formula satisfies such an assumption), they reduced the dimensionality from 5
to 4. By assuming further that the option-pricing function is homogeneous of degree one in F' and
K, namely,

C(S,K,T,r,6)=C(F,K,T,r)=KC(F/K,T,r),

as in the Black-Scholes formula, they reduced the dimensionality to 3. Ait-Sahalia and Lo (1998)

impose a semiparametric form on the pricing formula:

C(S,K,T,r,6) =Cps(F,K,T,r,0(F,K,T)),
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where Cps(F, K,T,r,0) is the Black-Scholes pricing formula given in §2 and o(F, K,T) is the
implied volatility, computed by inverting the Black-Scholes formula. Thus, the problem becomes
nonparametrically estimating the implied volatility function o(F, K,T'). This can be estimated by

using a nonparametric regression technique from historical data, namely
o; = o(Fi, K, Ti) + &,

where o; is the implied volatility of C; by inverting the Black-Scholes formula. By assuming further
that o(F,K,T) = o(F/K,T), the dimensionality is reduced to 2. This is one of the options in
Ait-Sahalia and Lo (1998).

The state price density f* is non-negative and hence the function C should be convex in the
strike K. Ait-Sahalia and Duarte (2003) proposed to estimate the option price under the con-
vex constraint, using a local linear estimator. See also Hardle and Yatchew (2002) for a related

approach.

4.2 Estimation of transition densities

The transition density of a Markov process characterizes the law of the process, except the initial
distribution. It provides useful tools for checking whether or not such a process follows a certain
SDE. It is the state price density of the price process under the risk neutral world. If such a process
were observable, the state price density can be estimated using the methods to be introduced.

Assume that we have a sample {X;a,7 = 0,---,n} from model (1). The “double-kernel” method
of Fan et al.(1996) is to observe that

E{Wh,(Xia —9)|Xi—1)a = 2} = pa(ylr), as hy — 0, (37)

for a kernel function W. Thus, the transition density pa(y|z) can be regarded approximately
as the nonparametric regression function of the response variable Kj,(X;a —y) on X;_1)a. An
application of the local linear estimator (Fan, 1992) yields [see (26)]

paylz) = ) Kn(Xi—na — 2)Why (Xin — y), (38)

n
=1

where

Sn2(x) —uSp1(x)
Sn,g (w)Snvo(a;) — Sn71(a?)2
is the equivalent kernel induced by the local linear fit (see §3.2 of Fan and Gijbels, 1996), where

Kn(u) = Kh(u)

Sh,j is defined in (25). For the homogeneity of notation, we will write h as hi. Fan et al.(1996)
establish the asymptotic normality of such an estimator under stationarity and p-mixing conditions
[necessarily decaying at geometric rate for SDE (1)], which gives explicitly the asymptotic bias and
variance of the estimator. See also §6.5 of Fan and Yao (2003).

Fan et al.(1996) propose a simple and ad-hoc method for selecting bandwidths. The resulting

bandwidth tends to over smooth the underlying density function. An alternative method is to apply
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the bootstrap method of Hall et al.(1999). This method is also ad-hoc and can not be consistent.
Here we introduce an alternative method which is related to the cross-validation idea of Rudemo
(1982) and Bowman (1984).

Let [a, b] be a given interval over which we wish to estimate the conditional density. Define the

Integrated Square Error (ISE) as
[ oatle) — pa o)1) 1o € fa ey
= [T hale @)1 € fa,hdrdy 2 [ palulelpalylens (@) € fo,Hdady

+ [ sl S @)1 € fo,H)dady,

where f is the stationary density of {X;a}. Notice that the last term does not depend on band-
widths. The minimization of ISE with respect to h is equivalent to the minimization of
+oo
| pawl)? f@)1(w € la.W)dady — 2 [ paGloips(ylo) f (@)1 € o B)drdy.  (39)
—0o0

A reasonable estimate of (39) is

1 & T
CV(hihe) = =31 s € lat]) [ paciyl X pa)dy
i=1 -0
2 <N
== _bPa—i(Xial Xi-1)a)I(X(i—1)a € [a,b]) (40)
=1

where pa —i(y|r) is the estimator (38) based on the sample {(X(;_1)a, X;a),j # i} or more precisely

{(X(j_1)A,Kh2(XjA - y)) ] F z} :

The term “cross-validation” refers to setting a part of the data aside for validation of a model
and using the remaining data to build the model. Minimizing C'V (h1, hy) over a region gives a
data-driven bandwidth.

Direct use of C'V(h) requires very intensive computation, since n local linear estimators are

needed. A simplified version is a 5-folded cross-validation as follow:

5
CVs(hi,h2) = ;Z\G(\ Z I(X(i—1a € [a, b])/PA —a)WIXG—1)a) dy

Jj=1 i€G(j

9 5

gz ’G Z pA —G(j ZA’XZ DA )I(X(z—l)A € [a7 b]) (41)
Jj=1 ZEG

where G(j) = {5k + j : 5k + j < n}, |G(j)| is the number of element in G(j) and pa _q(;) is the
estimator (38) without using the pair of data {(X(_1)a, Xia),i € G(j)}. The procedure requires
only to evaluate 5 local linear estimators.

The transition distribution can be estimated by integrating the estimator (38) over y. Alter-
native estimators can be obtained by an application of the local logistic regression and adjusted
Nadaraya-Watson method of Hall et al.(1999).
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Early references on the estimation of the transition distributions and densities include Roussas
(1967, 1969) and Rosenblatt (1970).

4.3 Testing parametric diffusion models and Markovian properties

With estimated transition density, one can now verify whether models such as (4)—(7) are valid.
Let pag(y|z) be the transition density under a parametric diffusion model. For example, for the
CIR model (6), the parameter § = (k, «,0). Asin (24), ignoring the initial value Xy, the parameter

f can be estimated by maximizing
Upag) =D logpa(Xial X(i—1)a)-
i=1

Let 0 be the maximum likelihood estimator. By the spirit of the GLR of Fan et al.(2001), the GLR
test for the null hypothesis

Ho : pa(ylz) = pas(ylz)
is

GLR = €(s) — £(p, 5);
where p is a nonparametric estimate of the transition density. Since the transition density can not
be estimated well over the region where data are sparse (usually at boundaries of the process), we
need to truncate the nonparametric (and simultaneously parametric) evaluation of the likelihood
at appropriate intervals.

In addition to employing the GLR test, one can also compare directly the difference between the

2 for an appropriate

parametric and nonparametric fits, resulting in test statistics such as ||pa—p N
norm || - [|. An alternative method is to apply the GLR of Fan et al.(2001) to separately test the
forms of the drift and diffusion, as in Fan and Zhang (2003). The transition density approach
appears more elegant, but more computationally intensive.

One can also use the transition density to test whether an observed series is Markovian (from
personal communication with Yacine Ait-Sahalia). For example, if a process {X;a} is Markovian,

then .
paalle) = [ palyl2ipa(elo)dz
—00

Thus, one can compute the distance between paa (y|z) and [T2° pa(y|2)pa(z]x)dz.
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