Chapter 1

Statistical Modeling

1.1 Statistical Models

Example 1: (Sampling inspection). A lot contains N products with defective rate θ. Take a sample without replacement of n products and get x defective products. What are the defective rates?

Possible outcomes: GGDGGGDD \cdots, realization of outcomes.
How do we connect the sample with the population?
$\underline{\text { Modelling - think of data as a realization of a the random experiment. }}$

Figure 1.1: Illustration of the sampling scheme.
Observe that a " $\mathrm{D} " \Longrightarrow \theta$ is large,

$$
\text { a } " \mathrm{G} " \Longrightarrow \theta \text { is small. }
$$

Probability Law: Under this physical experiment

$$
P(X=x)=\frac{\binom{N \theta}{x}\binom{N-N \theta}{n-x}}{\binom{N}{n}}
$$

for $\max (0, n-N(1-\theta)) \leqslant x \leqslant \min (n, N \theta)$. Convention: $\binom{n}{0}=1,\binom{n}{m}=0$ if $m>n$.

For example, $X / n \approx \theta$ and

$$
\sqrt{n}(X / n-\theta) \rightarrow N(0, \theta(1-\theta))
$$

Parameter: θ - unknown, fixed.
$\underline{\text { Parameter space } \Theta}$: the possible value of $\theta: \Theta=\{0 / N, 1 / N, \cdots, N / N\}$ or $[0,1]$.

For this specific example, the model comes from physical experiment. Now suppose that $N=10,000, n=100$ and $x=2$. Our problem becomes an inverse problem: What is the value of θ ?

Logically, if $\theta=1 \%$, it is possible to get $x=2$. If $\theta=2 \%$, it is also possible to get $x=2$. If $\theta=3.5 \%$, it is also possible to get $x=2$. So, given $x=2$, we can not tell exactly which θ it is. Our conclusion can not be drawn without uncertainty. However, we do know some are more likely than the others and the degree of uncertainty gets smaller, as n gets large, whatever N is.

Summary:

- Statisticians think data as realizations from a stochastic model; this connects
the sample and parameters.
- Statistical conclusions can not be drawn without uncertainty, as we have only a finite sample.
- Probability is from a box to sample, while statistics is from a sample to a box.

Example 2: A measurement model (e.g. molecular weight, RNA/protein expression level, fat-free weight). An object is weighed n times, with outcomes x_{1}, \cdots, x_{n}. Let μ be the true weight. We think the observed data as realizations of random variables X_{1}, \cdots, X_{n}, modeled as

$$
X_{i}=\mu+\varepsilon_{i}
$$

where ε_{i} is error of measurement noise.

Assumptions

i) ε_{i} is independent of μ.
ii) $\varepsilon_{i}, i=1,2, \cdots, n$ are independent.

Figure 1.2: Illustration of the idea of modeling.
iii) $\varepsilon_{i}, i=1,2, \cdots, n$ are identically distributed.
iv) the distribution of ε is continuous, with $E(\varepsilon)=0$; or specifically symmetric about $0: f(y)=f(-y)$ for any y.

Often, we assume further that $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$. Parameters in the model $\theta=$ $\left(\mu, \sigma^{2}\right)$, where σ^{2} is a nuisance parameter.

Given a realization $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)$ of $\mathbf{X}=\left(X_{1}, \cdots, X_{n}\right)$, what is the value of μ ?

Logically, if $\mu=100$, it is possible to observe \mathbf{x}. If $\mu=1$, it is also possible to observe \mathbf{x}. So we can not absolutely tell what value of μ is. But from the square-root law:

$$
\operatorname{var}(\bar{X})=E(\bar{X}-\mu)^{2}=\frac{\sigma^{2}}{n}
$$

Thus, \bar{x} is likely close to μ when n is large.

Figure 1.3: Distributions of individual observation versus that of average
Example 3: Drug evaluation (Hypertension drug)

$$
\text { Drug } \mathrm{A} \rightarrow \mathrm{~m} \text { patiets } \quad \text { Drug } \mathrm{B} \rightarrow \mathrm{n} \text { patiets }
$$

Measurement: blood pressure.
To eliminate confounding factors, use randomized controlled experiment. Here are the hypothetical outcomes:

Drug A					Drug B					
150	110	160	187	153	120	140	160	180	133	136
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}

To model the outcomes, a possible idealization is the following box-model.

Figure 1.4: Illustration of a two-sample problem

	Drug A	Drug B
random outcomes	X_{1}, \cdots, X_{m}	$Y_{1} \cdots, Y_{n}$
realizations	x_{1}, \cdots, x_{m}	y_{1}, \cdots, y_{n}

Further, we might assume that

$$
X_{1}, \cdots, X_{m} \stackrel{i . i . d}{\sim} N\left(\mu_{A}, \sigma_{A}^{2}\right) \quad Y_{1}, \cdots, Y_{n} \stackrel{i . i . d}{\sim} N\left(\mu_{B}, \sigma_{B}^{2}\right) .
$$

We sometimes assume further $\sigma_{A}=\sigma_{B}=\sigma$.
Parameters in the model: $\theta=\left(\mu_{A}, \mu_{B}, \sigma_{A}, \sigma_{B}\right)$.
Parameters of interest: $\mu=\mu_{A}-\mu_{B}$ and possibly σ.
Connection sample with population: data are realizations from a population, whose distribution depends on θ.

Model diagnostics: Statistical models are idealizations, postulated by statisticians - needed to be verified. For example, the data histograms should look like theoretical distributions. Two sample variances are about the same, etc.

General formulation

Data: $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)$ are thought of the realization of a random vector $\mathbf{X}=$ $\left(X_{1}, \cdots, X_{n}\right)$.

Model: The distribution of \mathbf{X} is assumed in $\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}, \Theta$ is the parametric space.

Objectives: Inferences about θ.

- In Example 1:

$$
P_{\theta}(\mathbf{x})=\frac{\binom{N \theta}{x}\binom{N-N \theta}{n-x}}{\binom{N}{n}}
$$

where $\Theta=\{0,1 / N, \cdots, N / N\}$ or $[0,1]$.

- In Example 2:

$$
P_{\theta}(\mathbf{x})=\Pi_{i=1}^{n} \sigma^{-1} \varphi\left(\frac{x_{i}-\mu}{\sigma}\right)
$$

where $\varphi(\cdot)$ is the normal density, $\Theta=\{(\mu, \sigma), \mu>0, \sigma>0\}$.

- In Example 3:

$$
P_{\theta}(\mathbf{x})=\Pi_{i=1}^{m} \sigma_{A}^{-1} \varphi\left(\frac{x_{i}-\mu_{A}}{\sigma_{A}}\right) \Pi_{i=1}^{n} \sigma_{B}^{-1} \varphi\left(\frac{y_{i}-\mu_{B}}{\sigma_{B}}\right)
$$

where $\varphi(\cdot)$ is the normal density, $\Theta=\left\{\left(\mu_{A}, \mu_{B}, \sigma_{A}, \sigma_{B}\right): \mu_{A}, \mu_{B}, \sigma_{A}, \sigma_{B}>0\right\}$.

- Data \mathbf{x} or its random variable \mathbf{X} can include both x - and y-component.

The parameter θ doesn't have to be in \mathbb{R}^{k}. In Example 2, without the normality assumption,

$$
P_{\theta}(\mathbf{x})=\prod_{i=1}^{n} f\left(x_{i}-\mu\right),
$$

assuming that $\left\{\varepsilon_{i}, i=1, \cdots, n\right\}$ are i.i.d random variables with density f. Then,

$$
\Theta=\{(\mu, f): \mu>0, f \text { is symmetric }\}
$$

Since no form of f has been imposed, i.e. f has not been parameterized, the parameter space Θ is called nonparametric or semiparametric.

Basic assumption: Throughout this class, we will assume that
(i) Continuous variables: All P_{θ} are continuous with densities $p(\mathbf{x}, \theta)$ or
(ii) Discrete variable:All P_{θ} are discrete with frequency functions $p(x, \theta)$. Further, there exists a set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots,\right\}$ such that
$\sum_{i=1}^{\infty} p\left(\mathbf{x}_{i}, \theta\right)=1$, where x_{i} is independent of θ.

For convenience, we will call $p(\mathbf{x}, \theta)$ as density in both cases.
Identifiability of parameters: There are sometimes more than one way of parameterization. In Example 3: write

$$
X_{1}, \cdots, X_{m} \stackrel{i . i . d}{\sim} N\left(\mu+\alpha_{1}, \sigma^{2}\right) \quad Y_{1}, \cdots, Y_{n} \stackrel{i . i . d}{\sim} N\left(\mu+\alpha_{2}, \sigma^{2}\right) .
$$

$\theta=\left(\mu, \alpha_{1}, \alpha_{2}, \sigma\right)$. Hence,

$$
p_{\theta}(\mathbf{x}, \mathbf{y}, \theta)=\Pi_{i=1}^{m} \sigma^{-1} \varphi\left(\frac{x_{i}-\mu-\alpha_{1}}{\sigma}\right) \Pi_{i=1}^{n} \sigma^{-1} \varphi\left(\frac{y_{i}-\mu-\alpha_{2}}{\sigma}\right)
$$

If $\theta_{1}=(0,1,2,1)$ and $\theta_{2}=(0.5,0.5,1.5,1)$, then $P_{\theta_{1}}=P_{\theta_{2}}$. Thus, the parameters θ are not identifiable.

Identifiability: The model $\left\{P_{\theta}, \theta \in \Theta\right\}$ is identifiable if $\theta_{1} \neq \theta_{2}$ implies $P_{\theta_{1}} \neq P_{\theta_{2}}$.
Example 4: (Regression Problem). Suppose a sample of data
$\left\{\left(x_{i 1}, \cdots, x_{i p}, y_{i}\right)\right\}_{i=1}^{n}$ are collected e.g.

$$
\begin{gathered}
y=\text { salary, } x_{1}=\text { age, } x_{2}=\text { year of experience, } \\
x_{3}=\text { job grade, } x_{4}=\text { gender, } x_{5}=\mathrm{PC} \text { job. }
\end{gathered}
$$

We wish to study the association between Y and X_{1}, \cdots, X_{p}. How to predict Y based on \mathbf{X} ? Any gender discrimination? (Note: the data \mathbf{x} in the general formulation now include all $\left.\left\{\left(x_{i 1}, \cdots, x_{i p}, y_{i}\right)\right\}_{i=1}^{n}\right)$.

- Model I: linear model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{5} X_{5}+\varepsilon, \quad \varepsilon \sim G
$$

where ε is the part that can not be explained by \mathbf{X}. Thus the parameter space
is $\Theta=\left\{\left(\beta_{0}, \beta_{1}, \cdots, \beta_{5}, G\right)\right\}$.

- Model II: semiparametric model

$$
Y=\mu\left(X_{1}, X_{2}, X_{3}\right)+\beta_{4} X_{4}+\beta_{5} X_{5}+\varepsilon
$$

The parameter space is $\Theta=\left\{\left(\mu(\cdot), \beta_{4}, \beta_{5}, G\right)\right\}$.

- Model III: nonparametric model

$$
Y=\mu\left(X_{1}, \cdots, X_{5}\right)+\varepsilon
$$

The parameter space is $\Theta=\{(\mu(\cdot), G)\}$.
Modeling: Data are thought of a realization from $\left(Y, X_{1}, \cdots, X_{5}\right)$ with the relationship between \mathbf{X} and Y described above.

From this example, the model is a convenient assumption made by data analysts.
Indeed, statistical models are frequently useful fictions. There are trade-offs among the choice of statistical models:
larger model \Rightarrow reducing model biases

$$
\Rightarrow \text { increasing estimation variance. }
$$

The decision depends also available sample size n.
Statistics: a function of data only, e.g.

$$
\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}, \quad X_{1}, \quad X_{1}^{2}+\sqrt{X_{2}^{2}+X_{3}^{2}+3}
$$

but

$$
X_{1}+\sigma, \quad \bar{X}+\mu
$$

are not.

Estimator: an estimating procedure for certain parameters, e.g. \bar{X} for μ.
Estimate: numerical value of an estimator when data are observed, e.g.

$$
n=3, \bar{x}=\frac{2+6+4}{3}=3
$$

Estimator - for all potential realizations, estimate - for a realized result.
Note: An estimator is an estimating procedure. The performance criteria for a method is based on estimator, while statistical decisions are based on estimate in real applications.

1.2 Bayesian Models

Probability: Two view points:

$$
\left\{\begin{array}{l}
\text { long run relative frequency - Frequentist } \\
\text { prior knowledge w/brief - Bayesian }
\end{array}\right.
$$

So far, we have assumed no information about θ beyond that provided by data. Often, we can have some (vague) knowledge about θ. For example,
— defective rate is 1%

- the distribution of DNA nucleotides is uniform,
- the intensity of an image is locally corrected.
$\underline{\text { Example 1. (Continued) Based on past records, one can construct a distribution }}$ of defective rate $\pi(\theta)$:

$$
P(\theta=i / N)=\pi_{i}, \quad i=1,2, \cdots, N .
$$

This provides as a prior distribution. The defective rate θ_{0} of the current lot is thought of as a realization from $\pi(\theta)$. Given θ_{0},

$$
P\left(X=x \mid \theta_{0}\right)=\frac{\binom{N \theta_{0}}{x}\binom{N-N \theta_{0}}{n-x}}{\binom{N}{n}},
$$

Basic element of Baysian models

Figure 1.5: Bayesian Framework
(i) The knowledge about θ is summarized by $\pi(\theta)$ - prior dist.
(ii) A realization θ from $\pi(\theta)$ serves as the parameter of \mathbf{X}.
(iii) Given θ, the observed data \mathbf{x} are a realization of p_{θ}. The joint density of (θ, \mathbf{X}) is $\pi(\theta) p(\mathbf{x} \mid \theta)$.
(iv) The goal of the Bayesian analysis is to modify the prior of θ after observing \mathbf{x} :

$$
\pi(\theta \mid \mathbf{X}=\mathbf{x})= \begin{cases}\frac{\pi(\theta) p(\mathbf{X} \mid \theta)}{\int \pi(\theta(\theta) p(\mathbf{X} \mid \theta) d \theta}, & \theta \text { continuous } \\ \frac{\pi(\theta) p(\mathbf{X} \mid \theta)}{\sum_{\theta} \pi(\theta) p(\mathbf{X} \mid \theta)}, & \theta \text { discrete }\end{cases}
$$

e.g. summarizing the distribution by posterior mean, median and SD, etc.

Figure 1.6: Prior versus Posterior distributions
Example 5 (Quality inspection) Suppose that from the past experience, the defective rate is about 10%. Suppose that a lot consists of 100 products, whose quality is independent of each other.

Figure 1.7: Prior knowledge of the defects
The prior distribution about the lot's defective rate is

$$
\pi\left(\theta_{i}\right)=P\left(\theta=\theta_{i}\right)=\binom{100}{i} 0.1^{i} 0.9^{100-i}, \quad \theta_{i}=\frac{i}{100}
$$

Prior mean and variance are

$$
\begin{gathered}
E \theta=E \frac{X}{100}=0.1 \\
\operatorname{var}(\theta)=\frac{1}{100^{2}} \operatorname{var}(X)=\frac{100 \times 0.9 \times 0.1}{100^{2}}, \\
S D(\theta)=0.03
\end{gathered}
$$

Now suppose that $n=19$ products are sampled and $x=10$ are defective. Then

$$
\pi\left(\theta_{i} \mid X=10\right)=\frac{P\left(\theta=\theta_{i}, X=10\right)}{P(X=10)}=\frac{\pi\left(\theta_{i}\right) P\left(X=10 \mid \theta=\theta_{i}\right)}{\sum_{j} \pi\left(\theta_{j}\right) P\left(X=10 \mid \theta=\theta_{j}\right)}
$$

e.g.

$$
\begin{aligned}
P(\theta \geqslant 0.2 \mid X=10) & =P(100 \theta-X \geqslant 10 \mid X=10) \\
& \approx 1-\Phi\left(\frac{10-81 \times 0.1}{\sqrt{81 \times 0.9 \times 0.1}}\right) \\
& \approx 30 \%
\end{aligned}
$$

($100 \theta-X$ is the number of defective left after 19 draws, having distribution Bernoulli($81,0.1$)). Compared with the prior probability

$$
\begin{aligned}
P(\theta \geqslant 0.2) & =P(100 \theta \geqslant 20) \\
& =1-\Phi\left(\frac{20-100 \times 0.1}{\sqrt{100 \times 0.9 \times 0.1}}\right) \\
& \approx 0.1 \%,
\end{aligned}
$$

where $100 \theta \sim \operatorname{Bernoulli}(100,0.1)$.
Example 6. Suppose that X_{1}, \cdots, X_{n} are i.i.d. random variables with Bernoulli (θ) and θ has a prior distribution $\pi(\theta)$. Then

$$
\pi(\theta \mid \mathbf{x})=\frac{\pi(\theta) \theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-\sum_{i=1}^{n} x_{i}}}{\int_{0}^{1} \pi(t) t^{\sum_{i=1}^{n} x_{i}}(1-t)^{n-\sum_{i=1}^{n} x_{i}} d t}
$$

Figure 1.8: Beta distributions with shape parameters: Left panel: $(4,10),(5,2),(2,5),(.7,3)$; right panel: $(5,5),(2,2),(1,1),(0.5,0.5)$ If $\theta \sim \operatorname{Beta}(r, s)$, i.e.

$$
\pi(\theta)=\frac{\theta^{s-1}(1-\theta)^{r-1}}{B(s, t)}, \quad E \theta=\frac{s}{r+s}
$$

then

$$
\pi(\theta \mid \mathbf{x}) \propto \theta^{s+\sum x_{i}-1}(1-\theta)^{n-\sum x_{i}+r} \sim \operatorname{Beta}\left(s+\sum x_{i}, n-\sum x_{i}+r\right)
$$

Thus,

$$
E(\theta \mid \mathbf{x})=\frac{s+\sum_{i=1}^{n} x_{i}}{n+s+r}=\left\{\begin{array}{cc}
\frac{\sum_{i=1}^{n} x_{i}+1}{n+2} & s=r=1 \\
\approx n^{-1} \sum_{i=1}^{n} x_{i}, & n \text { is large }
\end{array}\right.
$$

Conjugate prior: Note that the prior and posterior in this example belong to the same family. Such a prior is called "conjugate prior". It was introduced to facilitate the computation.

1.3 Sufficiency

Commonly-used principles for data reduction

$$
\left\{\begin{array}{l}
1^{o} \text { Sufficiency } \\
2^{o} \text { Invariant/equivariant }
\end{array}\right.
$$

Purpose:

$\left\{\begin{array}{l}1 \text { simplify probability structure, less obscure than the whole data } \\ 2 \text { understand whether a loss in reduction } \\ 3 \text { useful technical tools }\end{array}\right.$

Example 7. A machine produces n items in secession with probability θ of producing defective product. Suppose that there is no dependence between the quality of products.

Figure 1.9: Probability model and its summary statistic.

Then, the probability model is

$$
p(\mathbf{x}, \theta)=\Pi_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}=\theta^{\sum x_{i}}(1-\theta)^{1-\sum x_{i}}
$$

Any loss of information by using $\sum x_{i}$?

$$
\left\{\begin{array}{l}
\text { Yes - can not examine the length of a run } \\
\text { No - on inference of } \theta
\end{array}\right.
$$

Heuristic: Consider a vector of statistics $T(\mathbf{X})$, which summarizes the original data \mathbf{X}. Then

Full information, i.e. the information of θ contained in $X_{1}, X_{2}, \cdots X_{n}$
$=$ The information about θ given in $T(\mathbf{X})$ (reduced information)

+ Given $T(\mathbf{X})$, the information of θ remained in $X_{1}, X_{2}, \cdots X_{n}$ (the rest information).

Definition. A statistic is sufficient if given $T(\mathbf{X})$, the conditional distribution of \mathbf{X} is independent of θ - introduced by R.A.Fisher 1922.

Example 7 (continued). The conditional distribution of \mathbf{X} given $\sum_{i=1}^{n} X_{i}$ is

$$
\begin{aligned}
& P_{\theta}\left\{\mathbf{X}=\mathbf{x} \mid \sum_{i=1}^{n} X_{i}=s\right\} \\
= & \left\{\begin{array}{lc}
0 & \text { if } \sum x_{i} \neq s, \\
\frac{P\left(\mathbf{X}=\mathbf{X}, \sum_{i=1}^{n} X_{i}=s\right)}{P\left(\sum_{i=1}^{n} X_{i}=s\right)}=\frac{\theta^{s}(1-\theta)^{n-s}}{\binom{n}{c}^{\theta}(1-\theta)^{n-s}} & \text { otherwise }
\end{array} .\right.
\end{aligned}
$$

Obviously, this conditional distribution is independent of θ. Thus, $\sum_{i=1}^{n} X_{i}$ is sufficient.

Theorem 1 (Factorization, Fisher-Neyman Theorem)
In a regular model, a statistic $T(\mathbf{X})$ is sufficient in $\theta \Longleftrightarrow$

$$
p(\mathbf{x}, \theta)=g(T(\mathbf{x}), \theta) h(\mathbf{x}), \forall \mathbf{x} \in \mathbb{R}^{n} \text { and } \theta \in \Theta
$$

for some functions $g(t, \theta)$ and h.
Proof: For simplicity to illustrate the idea, we concentrate on discrete case.

Suppose that $T(\mathbf{X})$ is sufficient. Then

$$
\begin{aligned}
p(\mathbf{x}, \theta) & =P_{\theta}[\mathbf{X}=\mathbf{x}, T(\mathbf{X})=T(\mathbf{x})] \\
& =P_{\theta}[T(\mathbf{X})=T(\mathbf{x})] P_{\theta}[\mathbf{X}=\mathbf{x} \mid T(\mathbf{X})=T(\mathbf{x})] \\
& =g(T(\mathbf{x}), \theta) h(\mathbf{x})
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
& P_{\theta}\{\mathbf{X}=\mathbf{x} \mid T(\mathbf{X})=T(\mathbf{x})\} \\
= & \frac{P_{\theta}\{\mathbf{X}=\mathbf{x}\}}{P_{\theta}\{T(\mathbf{X})=T(\mathbf{x})\}} \\
= & \frac{g(T(\mathbf{x}), \theta) h(\mathbf{x})}{\sum_{\{y: T(\mathbf{y})=T(\mathbf{X})\}} g(T(\mathbf{y}), \theta) h(\mathbf{y})} \\
= & \frac{h(\mathbf{x})}{\sum_{\{y: T(\mathbf{y})=T(\mathbf{X})\}} h(\mathbf{y})} .
\end{aligned}
$$

Example 8. Let $X_{1}, \cdots X_{n}$ be the inter-arrival times of n customers with arrival rate θ.

Then, under some conditions (rare; constant rate; independence) $X_{1}, X_{2}, \cdots X_{n}$

Figure 1.10: Arrival times of customer
are i.i.d. random variables with Exponential(θ), i.e.

$$
p(\mathbf{X}, \theta)=\prod_{i=1}^{n} \theta \exp \left(-\theta x_{i}\right)=\theta^{n} \exp \left(-\theta \sum_{i=1}^{n} x_{i}\right), \forall x_{i} \geqslant 0
$$

Hence, by taking $g(t, \theta)=\theta^{n} \exp (-\theta t)$ and $h(\mathbf{x})=1$, we conclude that $T(\mathbf{X})=$ $\sum_{i=1}^{n} X_{i}$ is sufficient.

Example 9.(Size of population)

Figure 1.11: Estimation the size of population

Then, $X_{1}, X_{2}, \cdots X_{n}$ are i.i.d. with

$$
P\left(X_{i}=x_{i}\right)=\frac{1}{\theta} I\left\{1 \leqslant x_{i} \leqslant \theta\right\}
$$

Thus,

$$
p(\mathbf{x}, \theta)=\frac{1}{\theta^{n}} \Pi_{i=1}^{n} I\left\{1 \leqslant x_{i} \leqslant \theta\right\}=\theta^{-n} I\left\{\max \left\{x_{i}\right\} \leqslant \theta\right\}
$$

and the largest order statistic $X_{(n)}=\max \left\{X_{i}\right\}$ is sufficient.
Note: This is not a realistic model. More realistic one is the capture-recapture model.

Example 10 (Linear regression model). Suppose that $\left\{\left(X_{i}, Y_{i}\right)\right\}$ are a random sample from

$$
Y_{i}=\alpha+\beta X_{i}+\varepsilon_{i}, \quad \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

Then,

$$
\begin{aligned}
& p(\mathbf{X}, \mathbf{y}, \theta) \\
\propto & \Pi_{i=1}^{n} \sigma^{-1} \exp \left(-\frac{1}{2 \sigma^{2}}\left(Y_{i}-\alpha-\beta X_{i}\right)^{2}\right) f\left(X_{i}\right) \\
= & \Pi_{i=1}^{n} f\left(X_{i}\right) \exp \left(-\log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left[Y_{i}-\alpha-\beta X_{i}\right]^{2}\right) \\
& \times \exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n} Y_{i}^{2}-2 \alpha \sum_{i=1}^{n} Y_{i}-2 \beta \sum_{i=1}^{n} X_{i} Y_{i}\right]\right)
\end{aligned}
$$

where $f(\cdot)$ is density function of X . Thus,

$$
T=\left(\sum_{i=1}^{n} Y_{i}, \sum_{i=1}^{n} Y_{i}^{2}, \sum_{i=1}^{n} X_{i} Y_{i}, \sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)
$$

is a sufficient statistic. This is equivalent to the fact that

$$
T^{*}=\left(\bar{X}, \bar{Y}, \widehat{\sigma}_{X}^{2}, \widehat{\sigma}_{Y}^{2}, r\right)
$$

is a sufficient statistic.
Sufficiency Principle: Suppose that $T(\mathbf{X})$ is sufficient. For any decision rule
$\delta(\mathbf{X})$, we can find a decision rule $\delta^{*}(T(\mathbf{X}))$, depending on $T(\mathbf{X})$ and $\delta(\mathbf{X})$ such that

$$
R(\theta, \delta)=R\left(\theta, \delta^{*}\right) \text { for all } \theta
$$

where $R(\theta, \delta)=E_{\theta} \ell(\theta, \delta(\mathbf{X}))$ is the expected loss function — risk function. Namely, considering the class of sufficient statistic is good enough for making statistical decisions.

Proof. For better understanding, let us first assume that $\ell(\theta, a)$ is convex in a. Then, let $\delta^{*}(T)=E\{\delta(\mathbf{X}) \mid T(\mathbf{X})\}$. By Jenssen's inequality,

$$
\begin{aligned}
E \ell(\theta, \delta(\mathbf{X})) & =E\{E[\ell(\theta, \delta(\mathbf{X})) \mid T]\} \\
& \geq E\left\{\ell\left(\theta, \delta^{*}\right)\right\}=R\left(\theta, \delta^{*}\right)
\end{aligned}
$$

In general, let $\delta^{*}(T(\mathbf{x}))$ be drawn at random from the conditional distribution $\delta(\mathbf{x})$ given $T(\mathbf{X}): \delta^{*} \sim L(\delta \mid T)$. Then,

$$
R(\theta, \delta)=E\{E[\ell(\theta, \delta) \mid T]\}=E\left\{E\left[\ell\left(\theta, \delta^{*}\right) \mid T\right]\right\}=R\left(\theta, \delta^{*}\right)
$$

Sufficiency and Equivariant estimator

Example 11. Suppose $X_{1}, X_{2}, \cdots, X_{n} \sim i . i . d . N\left(\mu, \sigma^{2}\right)$, e.g. measurement of temperature.

data $\left(\right.$ in $\left.{ }^{o} C\right)$	data(in ${ }^{o} F /$ unnamed scale $)$
x_{1}	$a x_{1}+b$
x_{2}	$a x_{2}+b$
\vdots	\vdots
x_{n}	$a x_{n}+b$
$\widehat{\mu}: T\left(x_{1}, x_{2}, \cdots, x_{n}\right)$	$T\left(a x_{1}+b, a x_{2}+b, \cdots, a x_{n}+b\right)$
Estimate of $\mu: T\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ in ${ }^{\circ} C=a T\left(X_{1}, X_{2}, \cdots, X_{n}\right)+b$ in ${ }^{o} F$	

Hope: $T\left(a x_{1}+b, a x_{2}+b, \cdots, a x_{n}+b\right)=a T\left(x_{1}, x_{2}, \cdots, x_{n}\right)+b$
Equivariance: Such an estimator is called equivariant under linear transformation.

If we are interested in σ, we hope

$$
T\left(X_{1}+b, \cdots, X_{n}+b\right)=T\left(X_{1}, \cdots, X_{n}\right)
$$

- invariant under the translation transform or more generally

$$
T\left(a X_{1}+b, \cdots, a X_{n}+b\right)=a T\left(X_{1}, \cdots, X_{n}\right)
$$

- equivariant under scale transformation /invariant under translations.

By sufficient principle, we need only to consider the estimator of form

$$
T(\bar{X}, S)
$$

The equivariance for estimating μ requires

$$
T(a \bar{X}+b, a S)=a T(\bar{X}, S)+b, \quad \forall a \text { and } b
$$

Taking $a=1$ and $b=-\bar{X}, \Longrightarrow T(0, S)=T(\bar{X}, S)-\bar{X}$

$$
T(\bar{X}, S)=\bar{X}+T^{*}(S)
$$

From

$$
\begin{aligned}
T(a \bar{X}, a S) & =a \bar{X}+T^{*}(a S) \\
& =a\left[\bar{X}+T^{*}(S)\right] \\
& \Longrightarrow T^{*}(a S)=a T^{*}(S) \\
& \Longrightarrow T^{*}(S)=S T^{*}(1)
\end{aligned}
$$

Thus, denoting by $T^{*}=T^{*}(1)$,

$$
T(\bar{X}, S)=\bar{X}+T^{*} S
$$

Among this invariant class,

$$
\begin{aligned}
E[T(\bar{X}, S)-\mu]^{2} & =\left(E T^{*} S\right)^{2}+\operatorname{var}\left(\bar{X}+T^{*} S\right) \\
& =T^{* 2}(E S)^{2}+T^{* 2} \operatorname{var}(S)+\sigma^{2} / n
\end{aligned}
$$

It attains the minimum at $T^{*}=0$, namely, \bar{X} is the best equivalent estimator.

Sufficiency and Bayesian Model

Theorem 2 (Kolmogrov) If $T(\mathbf{X})$ is sufficient for θ, then for any prior $\pi(\theta)$, the conditional distribution

$$
\mathcal{L}(\theta \mid T(\mathbf{X}))=\mathcal{L}(\theta \mid \mathbf{X}) \text {-Bayes sufficient. }
$$

According to the theorem,

$$
E(g(\theta) \mid T)=E(g(\theta) \mid \mathbf{X}) .
$$

This implies that given $T(\mathbf{X})$, and \mathbf{X} and θ are independent, since

$$
\begin{aligned}
E[f(\theta) g(\mathbf{X}) \mid T] & =E[E(f(\theta) g(\mathbf{X}) \mid \mathbf{X}) \mid T] \\
& =E[g(\mathbf{X}) E(f(\theta) \mid T) \mid T] \\
& =E[g(\mathbf{X}) \mid T] E[f(\theta) \mid T] .
\end{aligned}
$$

1.4 Exponential Families

Many useful distributions admit a common structure:
Normal (continuous), Poisson (counts)

Examples Binomial (categorical), Beta
Gamma (constant Coefficient of Variation)

They form the basis of GLIM (Generalized LInear Models). Such a family is called exponential families, discovered independently by Koopman, Pitman and Darmois.

It is nice to give them a unified mathematical treatment.

The one parameter case

$$
\begin{aligned}
p(x, \mu) & =\frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma_{0}^{2}}\right) \\
& =\exp \left\{\frac{x \mu}{\sigma_{0}^{2}}-\frac{\mu^{2}}{2 \sigma_{0}^{2}}-\left(\frac{x^{2}}{2 \sigma_{0}^{2}}+\log \sqrt{2 \pi} \sigma_{0}\right)\right\} \\
& =\exp (T(x) c(\theta)+d(\theta)+S(x))
\end{aligned}
$$

Example 13. Let $P_{\theta}=\{\operatorname{Binomial}(n, \theta)\}$. Then,

$$
\begin{aligned}
p(x, \theta) & =\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \\
& =\exp \left\{x \log \frac{\theta}{1-\theta}+n \log (1-\theta)+\log \binom{n}{x}\right\} \\
& =\exp \{T(x) c(\theta)+d(\theta)+S(x)\}
\end{aligned}
$$

Definition: The family of distributions of a model $\left\{P_{\theta}: \theta \in \Theta\right\}$ is said to be a one-parameter exponential one if

$$
p(x, \theta)=\exp \{c(\theta) T(x)+d(\theta)+S(x)\}
$$

Example 14. Let $X \sim \operatorname{Unif}(0, \theta)$. Then

$$
p(x, \theta)=\frac{1}{\theta} I_{[0, \theta]}(x)=\exp \left(\log I_{[0, \theta]}(x)-\log \theta\right)
$$

not an exponential family. Another example is

$$
p(x, \theta)=\frac{1}{9} I(x \in\{0.1+\theta, \cdots, 0.9+\theta\})
$$

By setting $c(\theta)=\eta$, the exponential family can be written in the canonical form as

$$
p(x, \eta)=\exp \left(\eta T(x)+d_{0}(\eta)+S(x)\right)
$$

where $d_{0}(\eta)=d\left(c^{-1}(\eta)\right)$, when $c(\theta)$ is one-to-one.
η - canonical (natural) parameter and
$c(\cdot)$ - canonical link,
Examples of canonical link functions:

$$
\begin{array}{lll}
\text { Normal } & c(\theta)=\theta & \text { identity } \\
\text { Binomial } & c(\theta)=\log \frac{\theta}{1-\theta} & \text { logit } \\
\text { Poisson } & c(\theta)=\log \theta & \text { logarithm. }
\end{array}
$$

Regeneration properties:

1. Let $X_{1}, \cdots, X_{n} \sim$ i.i.d. P_{θ}, belonging to an exponential family. Then, the joint density $\prod_{i=1}^{n} p\left(x_{i}, \theta\right)$ is also in the exponential family. Further, $\sum_{i=1}^{n} T\left(X_{i}\right)$ is a sufficient statistic.
2. If $X \sim P_{\theta}$ which is exponential family, and $\left\{Q_{\theta}\right\}$ be the distribution of $T(X)$, Then, $\left\{Q_{\theta}\right\}$ is also in the exponential family.

Theorem 3 If $X \sim \exp \left\{\eta T(X)+d_{0}(\eta)+S(x)\right\}, \eta$ is an interior of \mathcal{E}, then

$$
\psi(s)=E \exp \{s T(X)\}=\exp \left[d_{0}(\eta)-d_{0}(s+\eta)\right], \text { for } s \text { near } 0
$$

Moreover, $E T(X)=-d_{0}^{\prime}(\eta), \operatorname{var}(T(\mathbf{x}))=-d_{0}^{\prime \prime}(\eta)$. (The function d_{0} is convave.)

Proof: Note that

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \exp \left\{\eta T(x)+d_{0}(\eta)+S(x)\right\} d x=1, \\
\Longrightarrow & \int_{-\infty}^{+\infty} \exp \{\eta T(x)+S(x)\} d x=\exp \left(-d_{0}(\eta)\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\psi(s) & =E\{\exp (s T(x))\} \\
& =\int_{-\infty}^{+\infty} \exp \left\{s T(x)+\eta T(x)+d_{0}(\eta)+S(x)\right\} d x \\
& =\exp \left(d_{0}(\eta)-d_{0}(\eta+s)\right)
\end{aligned}
$$

From the properties of the moment generating function,

$$
\begin{aligned}
\left.\psi^{\prime}(s)\right|_{s=0} & =E\left\{\left.T(X) \exp (s T(X))\right|_{s=0}\right\} \\
& =E T(X) \\
& =-\left.\exp \left(d_{0}(\eta)-d_{0}(\eta+s)\right) d_{0}^{\prime}(\eta+s)\right|_{s=0}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& E T^{2}(X)=\left.\psi^{\prime \prime}(s)\right|_{s=0}=-d_{0}^{\prime \prime}(\eta)+d_{0}^{\prime}(\eta)^{2} \\
\Longrightarrow \quad & \operatorname{var}(T(X))=-d_{0}^{\prime \prime}(\eta) .
\end{aligned}
$$

Example 15. $X_{1}, \cdots, X_{n} \sim$ i.i.d.

$$
p(x, \theta)=k \theta(\theta x)^{k-1} \exp \left(-(\theta x)^{k}\right), x>0
$$

— Weibull distribution \Longrightarrow model "failure time" with hazard risk: $\frac{f(t)}{1-F(t)}=k \theta(\theta t)^{k-1}$ $k=1 \Longrightarrow$ exponential distribution - constant risk

$$
k=2 \Longrightarrow \text { Raleigh distribution } \quad-k \theta^{2} t \text { (linear risk) }
$$

Then, the joint density

$$
\begin{aligned}
p(\mathbf{x}, \theta) & =\Pi_{i=1}^{n} k \theta\left(\theta x_{i}\right)^{k-1} \exp \left(-\theta^{k} x_{i}^{k}\right) \\
& =\exp \left(-\theta^{k} \sum_{i=1}^{n} x_{i}^{k}-n k \log \theta+\sum_{i=1}^{n} \log x_{i}^{k-1}+n \log k\right) .
\end{aligned}
$$

For this family of distributionm,

$$
\begin{aligned}
& \eta=-\theta^{k} \\
& d_{0}(\eta)=-n \log \theta^{k}=-n \log (-\eta)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \sum_{i=1}^{n} X_{i}^{k} \text { - natural sufficient statistic, } \\
& E \sum_{i=1}^{n} X_{i}^{k}=\frac{-n}{\eta}=\frac{n}{\theta^{k}} \\
& \operatorname{var}\left(\sum_{i=1}^{n} X_{i}^{k}\right)=\frac{n}{\eta^{2}}=\frac{n}{\theta^{2 k}}
\end{aligned}
$$

Direct computation of these moments are more complicated.

The k parameter case

A family of distributions $\left\{P_{\theta}: \theta \in \Theta\right\}$ is said to be k parameter exponential family if its joint density admits the form

$$
\begin{aligned}
p(\mathbf{x}, \theta) & =\exp \left(\sum_{i=1}^{k} C_{i}(\theta) T_{i}(\mathbf{x})+d(\theta)+S(\mathbf{x})\right) \\
& =\exp \left(\sum_{i=1}^{k} \eta_{i} T_{i}(\mathbf{x})+d_{0}(\eta)\right)
\end{aligned}
$$

By the factorization theorem, the vector $T(\mathbf{x})=\left(T_{1}(\mathbf{x}), \cdots, T_{k}(\mathbf{x})\right)$ is a sufficient statistic.

Suppose that $\mathbf{X}_{1}, \cdots, \mathbf{X}_{n}$ are a random sample from P_{θ}. Put $\mathbf{X}=\left(\mathbf{X}_{1}, \cdots, \mathbf{X}_{n}\right)$ which is available data.

Then, the distribution of \mathbf{X} forms a k-parametric family with

$$
T(\mathbf{X})=\left(\sum_{i=1}^{n} T_{1}\left(\mathbf{X}_{i}\right), \cdots, \sum_{i=1}^{n} T_{k}\left(\mathbf{X}_{i}\right)\right)
$$

Let $\psi(\mathbf{s})=E \exp \left(\mathbf{s}^{T} T(\mathbf{x})\right)$. Then,

$$
\begin{aligned}
& \psi(s)=\exp \left(d_{0}(\eta)-d_{0}(\eta+\mathbf{s})\right) \\
& E T(\mathbf{x})=-d_{0}^{\prime}(\eta)-\text { mean vector } \\
& \operatorname{var}(T(\mathbf{x}))=-d_{0}^{\prime \prime}(\eta)-\text { variance-covariance matrix }
\end{aligned}
$$

Example 16. (Multinomial trails)

$$
P\left(X_{i}=j\right)=p_{j}=\Pi_{\ell=1}^{k} p_{\ell}^{I(j=\ell)}
$$

Figure 1.12: Multinomial trial. Each outcome is a k-dimensional unit vector, indicting which category is observed.

$$
\begin{gathered}
\Pi_{i=1}^{n} P\left(x_{i}, p\right)=\Pi_{i=1}^{k} \Pi_{\ell=1}^{n} p_{\ell}^{I\left(x_{i}=\ell\right)}=\Pi_{\ell=1}^{k} p_{\ell}^{n_{\ell}} \\
n_{\ell}=\sum_{i=1}^{n} I\left(x_{i}=\ell\right)-\sharp \text { of times observing } \ell
\end{gathered}
$$

The joint density is

$$
\begin{aligned}
p(\mathbf{x}, \mathbf{p}) & =\exp \left\{\sum_{\substack{ \\
k-1}} n_{\ell} \log p_{\ell}\right\} \\
& =\exp \left\{\sum_{\ell=1}^{k-1} n_{\ell} \log \frac{p_{\ell}}{p_{k}}+n \log p_{k}\right\} .
\end{aligned}
$$

Let $\alpha_{j}=\log p_{j}-\log p_{k}, j=1, \cdots, k-1$. Then

$$
\begin{gathered}
p_{k}=1-p_{1}-\cdots-p_{k-1}=1-p_{k} \sum_{j=1}^{k-1} e^{\alpha_{j}} \\
\Longrightarrow p_{k}=\frac{1}{1+\sum_{j=1}^{k-1} e^{\alpha_{j}}}
\end{gathered}
$$

Hence,

$$
p(\mathbf{x}, \mathbf{p})=\exp \left\{\sum_{\ell=1}^{k-1} n_{\ell} \alpha_{\ell}-n \log \left(1+\sum_{j=1}^{k-1} e^{\alpha_{j}}\right)\right\}
$$

The variance and covariance matrix of $\left(n_{1}, \cdots, n_{k}\right)$ can easily be completed.
Other Examples: - Multivariate normal distributions

- Dirichlet distribution (multivariate β-distribution):

$$
c x_{1}^{\beta_{1}-1} \cdots x_{p}^{\beta_{p}-1}\left(1-x_{1}-\cdots-x_{p}\right)^{\beta_{p+1}-1} .
$$

