
Chapter 1

Statistical Modeling

1.1 Statistical Models

Example 1: (Sampling inspection). A lot contains N products with defective rate

θ. Take a sample without replacement of n products and get x defective products.

What are the defective rates?

Possible outcomes: GGDGGGDD · · · , realization of outcomes.

How do we connect the sample with the population?

Modelling — think of data as a realization of a the random experiment.

1
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Figure 1.1: Illustration of the sampling scheme.

Observe that a ”D” =⇒ θ is large,

a ”G” =⇒ θ is small.

Probability Law: Under this physical experiment

P (X = x) =

(
Nθ
x

)(
N−Nθ
n−x

)(
N
n

) ,

for max(0, n − N(1 − θ)) 6 x 6 min(n,Nθ). Convention:
(
n
0

)
= 1,

(
n
m

)
= 0 if

m > n.

For example, X/n ≈ θ and

√
n(X/n− θ) → N(0, θ(1− θ)).
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Parameter: θ — unknown, fixed.

Parameter space Θ: the possible value of θ: Θ = {0/N, 1/N, · · · , N/N } or

[0, 1].

For this specific example, the model comes from physical experiment. Now sup-

pose that N = 10, 000, n = 100 and x = 2. Our problem becomes an inverse

problem: What is the value of θ?

Logically, if θ = 1%, it is possible to get x = 2. If θ = 2%, it is also possible

to get x = 2. If θ = 3.5%, it is also possible to get x = 2. So, given x = 2,

we can not tell exactly which θ it is. Our conclusion can not be drawn without

uncertainty. However, we do know some are more likely than the others and the

degree of uncertainty gets smaller, as n gets large, whatever N is.

Summary:

— Statisticians think data as realizations from a stochastic model; this connects
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the sample and parameters.

— Statistical conclusions can not be drawn without uncertainty, as we have only a

finite sample.

— Probability is from a box to sample, while statistics is from a sample to a box.

Example 2: A measurement model (e.g. molecular weight, RNA/protein expres-

sion level, fat-free weight). An object is weighed n times, with outcomes x1, · · · , xn.

Let µ be the true weight. We think the observed data as realizations of random

variables X1, · · · , Xn, modeled as

Xi = µ + εi

where εi is error of measurement noise.

Assumptions

i) εi is independent of µ.

ii) εi, i = 1, 2, · · · , n are independent.
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Figure 1.2: Illustration of the idea of modeling.

iii) εi, i = 1, 2, · · · , n are identically distributed.

iv) the distribution of ε is continuous, with E(ε) = 0; or specifically symmetric

about 0: f (y) = f (−y) for any y.

Often, we assume further that εi ∼ N(0, σ2). Parameters in the model θ =

(µ, σ2), where σ2 is a nuisance parameter.

Given a realization x = (x1, · · · , xn) of X = (X1, · · · , Xn), what is the value of

µ?
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Logically, if µ = 100, it is possible to observe x. If µ = 1, it is also possible to

observe x. So we can not absolutely tell what value of µ is. But from the square-root

law:

var(X̄) = E(X̄ − µ)2 =
σ2

n
.

Thus, x̄ is likely close to µ when n is large.

Figure 1.3: Distributions of individual observation versus that of average

Example 3: Drug evaluation (Hypertension drug)

Drug A → m patiets Drug B → n patiets
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Measurement: blood pressure.

To eliminate confounding factors, use randomized controlled experiment. Here

are the hypothetical outcomes:

Drug A Drug B

150 110 160 187 153 120 140 160 180 133 136

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

To model the outcomes, a possible idealization is the following box-model.

Figure 1.4: Illustration of a two-sample problem

Drug A Drug B

random outcomes X1, · · · , Xm Y1 · · · , Yn
realizations x1, · · · , xm y1, · · · , yn
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Further, we might assume that

X1, · · · , Xm
i.i.d∼ N(µA, σ

2
A) Y1, · · · , Yn

i.i.d∼ N(µB, σ
2
B).

We sometimes assume further σA = σB = σ.

Parameters in the model: θ = (µA, µB, σA, σB).

Parameters of interest: µ = µA − µB and possibly σ.

Connection sample with population: data are realizations from a population,

whose distribution depends on θ.

Model diagnostics: Statistical models are idealizations, postulated by statisti-

cians — needed to be verified. For example, the data histograms should look like

theoretical distributions. Two sample variances are about the same, etc.

General formulation

Data: x = (x1, · · · , xn) are thought of the realization of a random vector X =

(X1, · · · , Xn).
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Model: The distribution of X is assumed in P = {Pθ : θ ∈ Θ}, Θ is the parametric

space.

Objectives: Inferences about θ.

— In Example 1:

Pθ(x) =

(
Nθ
x

)(
N−Nθ
n−x

)(
N
n

) ,

where Θ = {0, 1/N, · · · , N/N} or [0, 1].

— In Example 2:

Pθ(x) = Πn
i=1σ

−1ϕ
(xi − µ

σ

)
where ϕ(·) is the normal density, Θ = {(µ, σ), µ > 0, σ > 0}.

— In Example 3:

Pθ(x) = Πm
i=1σ

−1
A ϕ
(xi − µA

σA

)
Πn
i=1σ

−1
B ϕ

(
yi − µB
σB

)
,

where ϕ(·) is the normal density, Θ = {(µA, µB, σA, σB) : µA, µB, σA, σB > 0}.
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— Data x or its random variable X can include both x- and y-component.

The parameter θ doesn’t have to be in Rk. In Example 2, without the normality

assumption,

Pθ(x) = Πn
i=1f (xi − µ),

assuming that {εi, i = 1, · · · , n} are i.i.d random variables with density f . Then,

Θ = {(µ, f) : µ > 0, f is symmetric}.

Since no form of f has been imposed, i.e. f has not been parameterized, the

parameter space Θ is called nonparametric or semiparametric.

Basic assumption: Throughout this class, we will assume that

(i) Continuous variables: All Pθ are continuous with densities p(x, θ) or

(ii) Discrete variable:All Pθ are discrete with frequency functions p(x, θ). Further,

there exists a set {x1,x2, · · · , } such that∑∞
i=1 p(xi, θ) = 1,where xi is independent of θ.
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For convenience, we will call p(x, θ) as density in both cases.

Identifiability of parameters: There are sometimes more than one way of

parameterization. In Example 3: write

X1, · · · , Xm
i.i.d∼ N(µ + α1, σ

2) Y1, · · · , Yn
i.i.d∼ N(µ + α2, σ

2).

θ = (µ, α1, α2, σ). Hence,

pθ(x,y, θ) = Πm
i=1σ

−1ϕ

(
xi − µ− α1

σ

)
Πn
i=1σ

−1ϕ

(
yi − µ− α2

σ

)
,

If θ1 = (0, 1, 2, 1) and θ2 = (0.5, 0.5, 1.5, 1), then Pθ1 = Pθ2. Thus, the parameters

θ are not identifiable.

Identifiability: The model {Pθ, θ ∈ Θ} is identifiable if θ1 6= θ2 implies Pθ1 6= Pθ2.

Example 4: (Regression Problem). Suppose a sample of data

{(xi1, · · · , xip, yi)}ni=1 are collected e.g.

y =salary, x1 =age, x2 = year of experience,

x3 = job grade, x4 = gender, x5 = PC job.
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We wish to study the association between Y and X1, · · · , Xp. How to predict

Y based on X? Any gender discrimination? (Note: the data x in the general

formulation now include all {(xi1, · · · , xip, yi)}ni=1).

— Model I: linear model

Y = β0 + β1X1 + β2X2 + · · · + β5X5 + ε, ε ∼ G,

where ε is the part that can not be explained by X. Thus the parameter space

is Θ = {(β0, β1, · · · , β5, G)}.

— Model II: semiparametric model

Y = µ(X1, X2, X3) + β4X4 + β5X5 + ε.

The parameter space is Θ = {(µ(·), β4, β5, G)}.

— Model III: nonparametric model

Y = µ(X1, · · · , X5) + ε.
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The parameter space is Θ = {(µ(·), G)}.

Modeling: Data are thought of a realization from (Y,X1, · · · , X5) with the rela-

tionship between X and Y described above.

From this example, the model is a convenient assumption made by data analysts.

Indeed, statistical models are frequently useful fictions. There are trade-offs among

the choice of statistical models:

larger model ⇒ reducing model biases

⇒ increasing estimation variance.

The decision depends also available sample size n.

Statistics: a function of data only, e.g.

X =
X1 + · · · +Xn

n
, X1, X2

1 +
√
X2

2 +X2
3 + 3,

but

X1 + σ, X + µ

are not.



ORF 524: Statistical Modeling – J.Fan 14

Estimator: an estimating procedure for certain parameters, e.g. X for µ.

Estimate: numerical value of an estimator when data are observed, e.g.

n = 3, x =
2 + 6 + 4

3
= 3.

Estimator — for all potential realizations, estimate — for a realized result.

Note: An estimator is an estimating procedure. The performance criteria for a

method is based on estimator, while statistical decisions are based on estimate in

real applications.

1.2 Bayesian Models

Probability: Two view points: long run relative frequency — Frequentist

prior knowledge w/brief — Bayesian
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So far, we have assumed no information about θ beyond that provided by data.

Often, we can have some (vague) knowledge about θ. For example,

— defective rate is 1%

— the distribution of DNA nucleotides is uniform,

— the intensity of an image is locally corrected.

Example 1. (Continued) Based on past records, one can construct a distribution

of defective rate π(θ):

P (θ = i/N) = πi, i = 1, 2, · · · , N.

This provides as a prior distribution. The defective rate θ0 of the current lot is

thought of as a realization from π(θ). Given θ0,

P (X = x|θ0) =

(
Nθ0
x

)(
N−Nθ0
n−x

)(
N
n

) ,

Basic element of Baysian models
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Figure 1.5: Bayesian Framework

(i) The knowledge about θ is summarized by π(θ) — prior dist.

(ii) A realization θ from π(θ) serves as the parameter of X.

(iii) Given θ, the observed data x are a realization of pθ. The joint density of (θ,X)

is π(θ)p(x|θ).

(iv) The goal of the Bayesian analysis is to modify the prior of θ after observing x:

π(θ|X = x) =


π(θ)p(x|θ)∫
π(θ)p(x|θ) dθ, θ continuous,

π(θ)p(x|θ)∑
θ π(θ)p(x|θ), θ discrete

e.g. summarizing the distribution by posterior mean, median and SD, etc.
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Figure 1.6: Prior versus Posterior distributions

Example 5 (Quality inspection) Suppose that from the past experience, the de-

fective rate is about 10%. Suppose that a lot consists of 100 products, whose quality

is independent of each other.
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Figure 1.7: Prior knowledge of the defects

The prior distribution about the lot’s defective rate is

π(θi) = P (θ = θi) =

(
100

i

)
0.1i0.9100−i, θi =

i

100
.

Prior mean and variance are

Eθ = E X
100 = 0.1

var(θ) = 1
1002var(X) = 100×0.9×0.1

1002 ,

SD(θ) = 0.03.
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Now suppose that n = 19 products are sampled and x = 10 are defective. Then

π(θi|X = 10) =
P (θ = θi, X = 10)

P (X = 10)
=

π(θi)P (X = 10|θ = θi)∑
j π(θj)P (X = 10|θ = θj)

.

e.g.

P (θ > 0.2|X = 10) = P (100θ −X > 10|X = 10)

≈ 1− Φ
(

10− 81× 0.1√
81× 0.9× 0.1

)
≈ 30%.

(100θ −X is the number of defective left after 19 draws, having distribution Bernoulli(81, 0.1)). Compared with the prior probability

P (θ > 0.2) = P (100θ > 20)

= 1− Φ
(

20− 100× 0.1√
100× 0.9× 0.1

)
≈ 0.1%,

where 100θ ∼ Bernoulli(100,0.1).

Example 6. Suppose thatX1, · · · , Xn are i.i.d. random variables with Bernoulli(θ)

and θ has a prior distribution π(θ). Then

π(θ|x) =
π(θ)θ

∑n
i=1 xi(1− θ)n−

∑n
i=1 xi∫ 1

0 π(t)t
∑n
i=1 xi(1− t)n−

∑n
i=1 xidt

.
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Figure 1.8: Beta distributions with shape parameters: Left panel: (4, 10), (5, 2), (2, 5), (.7, 3); right panel: (5, 5), (2, 2), (1, 1), (0.5, 0.5)

If θ ∼ Beta(r, s), i.e.

π(θ) =
θs−1(1− θ)r−1

B(s, t)
, Eθ =

s

r + s
,
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then

π(θ|x) ∝ θs+
∑
xi−1(1− θ)n−

∑
xi+r ∼ Beta(s +

∑
xi, n−

∑
xi + r).

Thus,

E(θ|x) =
s +

∑n
i=1 xi

n + s + r
=


∑n
i=1 xi+1
n+2 s = r = 1

≈ n−1
∑n

i=1 xi, n is large

Conjugate prior: Note that the prior and posterior in this example belong to the

same family. Such a prior is called “conjugate prior”. It was introduced to facilitate

the computation.

1.3 Sufficiency

Commonly-used principles for data reduction 1o Sufficiency

2o Invariant/equivariant



ORF 524: Statistical Modeling – J.Fan 22

Purpose:
1 simplify probability structure, less obscure than the whole data

2 understand whether a loss in reduction

3 useful technical tools

Example 7. A machine produces n items in secession with probability θ of pro-

ducing defective product. Suppose that there is no dependence between the quality

of products.

Figure 1.9: Probability model and its summary statistic.
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Then, the probability model is

p(x, θ) = Πn
i=1θ

xi(1− θ)1−xi = θ
∑
xi(1− θ)1−

∑
xi.

Any loss of information by using
∑
xi? Yes — can not examine the length of a run

No — on inference of θ

Heuristic: Consider a vector of statistics T (X), which summarizes the original

data X. Then

Full information, i.e. the information of θ contained in X1, X2, · · ·Xn

= The information about θ given in T (X)(reduced information)

+ Given T (X), the information of θ remained in X1, X2, · · ·Xn(the rest informa-

tion).

Definition. A statistic is sufficient if given T (X), the conditional distribution of

X is independent of θ — introduced by R.A.Fisher 1922.
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Example 7 (continued). The conditional distribution of X given
∑n

i=1Xi is

Pθ{X = x|
n∑
i=1

Xi = s}

=


0 if

∑
xi 6= s,

P (X=x,
∑n
i=1Xi=s)

P (
∑n
i=1Xi=s)

= θs(1−θ)n−s

(nc)θs(1−θ)n−s
otherwise

.

Obviously, this conditional distribution is independent of θ. Thus,
∑n

i=1Xi is suf-

ficient.

Theorem 1 (Factorization, Fisher-Neyman Theorem)

In a regular model, a statistic T (X) is sufficient in θ ⇐⇒

p(x, θ) = g(T (x), θ)h(x),∀x ∈ Rnand θ ∈ Θ

for some functions g(t, θ) and h.

Proof: For simplicity to illustrate the idea, we concentrate on discrete case.
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Suppose that T (X) is sufficient. Then

p(x, θ) = Pθ[X = x, T (X) = T (x)]

= Pθ[T (X) = T (x)]Pθ[X = x|T (X) = T (x)]

= g(T (x), θ)h(x).

Conversely,

Pθ{X = x|T (X) = T (x)}

=
Pθ{X = x}

Pθ{T (X) = T (x)}

=
g(T (x), θ)h(x)∑

{y:T (y)=T (x)} g(T (y), θ)h(y)

=
h(x)∑

{y:T (y)=T (x)} h(y)
.

Example 8. Let X1, · · ·Xn be the inter-arrival times of n customers with arrival

rate θ.

Then, under some conditions (rare; constant rate; independence) X1, X2, · · ·Xn
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Figure 1.10: Arrival times of customer

are i.i.d. random variables with Exponential(θ), i.e.

p(X, θ) = Πn
i=1θ exp(−θxi) = θn exp(−θ

n∑
i=1

xi),∀xi > 0

Hence, by taking g(t, θ) = θn exp(−θt) and h(x) = 1, we conclude that T (X) =∑n
i=1Xi is sufficient.

Example 9.(Size of population)

Figure 1.11: Estimation the size of population
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Then, X1, X2, · · ·Xn are i.i.d. with

P (Xi = xi) =
1

θ
I{1 6 xi 6 θ}.

Thus,

p(x, θ) =
1

θn
Πn
i=1I{1 6 xi 6 θ} = θ−nI{max{xi} 6 θ},

and the largest order statistic X(n) = max{Xi} is sufficient.

Note: This is not a realistic model. More realistic one is the capture-recapture

model.

Example 10 (Linear regression model). Suppose that {(Xi, Yi)} are a random

sample from

Yi = α + βXi + εi, εi ∼ N(0, σ2).
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Then,

p(X,y, θ)

∝ Πn
i=1 σ

−1 exp(− 1

2σ2
(Yi − α− βXi)

2)f (Xi)

= Πn
i=1f (Xi) exp

(
− log σ − 1

2σ2

n∑
i=1

[Yi − α− βXi]
2

)

× exp

(
− 1

2σ2
[

n∑
i=1

Y 2
i − 2α

n∑
i=1

Yi − 2β

n∑
i=1

XiYi]

)
where f (·) is density function of X. Thus,

T =

(
n∑
i=1

Yi,
n∑
i=1

Y 2
i ,

n∑
i=1

XiYi,
n∑
i=1

Xi,
n∑
i=1

X2
i

)
is a sufficient statistic. This is equivalent to the fact that

T ∗ = (X̄, Ȳ , σ̂2
X, σ̂

2
Y , r)

is a sufficient statistic.

Sufficiency Principle: Suppose that T (X) is sufficient. For any decision rule
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δ(X), we can find a decision rule δ∗(T (X)), depending on T (X) and δ(X) such

that

R(θ, δ) = R(θ, δ∗) for all θ,

whereR(θ, δ) = Eθ`(θ, δ(X)) is the expected loss function — risk function. Namely,

considering the class of sufficient statistic is good enough for making statistical

decisions.

Proof. For better understanding, let us first assume that `(θ, a) is convex in a.

Then, let δ∗(T ) = E{δ(X)|T (X)}. By Jenssen’s inequality,

E`(θ, δ(X)) = E{E[`(θ, δ(X))|T ]}

≥ E{`(θ, δ∗)} = R(θ, δ∗).

In general, let δ∗(T (x)) be drawn at random from the conditional distribution δ(x) given T (X) : δ∗ ∼ L(δ|T ). Then,

R(θ, δ) = E{E[`(θ, δ)|T ]} = E{E[`(θ, δ∗)|T ]} = R(θ, δ∗).

Sufficiency and Equivariant estimator
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Example 11. Suppose X1, X2, · · · , Xn ∼ i.i.d.N(µ, σ2), e.g. measurement of

temperature.

data (in oC) data(in oF/unnamed scale)

x1 ax1 + b

x2 ax2 + b

... ...

xn axn + b

µ̂: T (x1, x2, · · · , xn) T (ax1 + b, ax2 + b, · · · , axn + b)

Estimate of µ: T (X1, X2, · · · , Xn) in oC = aT (X1, X2, · · · , Xn) + b in oF

Hope: T (ax1 + b, ax2 + b, · · · , axn + b) = aT (x1, x2, · · · , xn) + b

Equivariance: Such an estimator is called equivariant under linear transforma-

tion.

If we are interested in σ, we hope

T (X1 + b, · · · , Xn + b) = T (X1, · · · , Xn)
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— invariant under the translation transform or more generally

T (aX1 + b, · · · , aXn + b) = aT (X1, · · · , Xn),

— equivariant under scale transformation /invariant under translations.
By sufficient principle, we need only to consider the estimator of form

T (X̄, S).

The equivariance for estimating µ requires

T (aX̄ + b, aS) = aT (X̄, S) + b, ∀a and b

Taking a = 1 and b = −X̄,=⇒ T (0, S) = T (X̄, S)− X̄

T (X̄, S) = X̄ + T ∗(S).

From

T (aX̄, aS) = aX̄ + T ∗(aS)

= a[X̄ + T ∗(S)]

=⇒ T ∗(aS) = aT ∗(S)

=⇒ T ∗(S) = ST ∗(1).

Thus, denoting by T ∗ = T ∗(1),

T (X̄, S) = X̄ + T ∗S.

Among this invariant class,

E[T (X̄, S)− µ]2 = (ET ∗S)2 + var(X̄ + T ∗S)

= T ∗2(ES)2 + T ∗2var(S) + σ2/n
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It attains the minimum at T ∗ = 0, namely, X̄ is the best equivalent estimator.

Sufficiency and Bayesian Model

Theorem 2 (Kolmogrov) If T (X) is sufficient for θ, then for any prior π(θ),

the conditional distribution

L(θ|T (X)) = L(θ|X)—Bayes sufficient.

According to the theorem,

E(g(θ)|T ) = E(g(θ)|X).

This implies that given T (X), and X and θ are independent, since

E[f (θ)g(X)|T ] = E[E(f (θ)g(X)|X)|T ]

= E[g(X)E(f (θ)|T )|T ]

= E[g(X)|T ]E[f (θ)|T ].
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1.4 Exponential Families

Many useful distributions admit a common structure:

Normal (continuous), Poisson (counts)

Examples Binomial (categorical), Beta

Gamma (constant Coefficient of Variation)

They form the basis of GLIM (Generalized LInear Models). Such a family is called

exponential families, discovered independently by Koopman, Pitman and Darmois.

It is nice to give them a unified mathematical treatment.

The one parameter case

Example 12. Let Pθ = {N(µ, σ2
0), σ0 is known}. Then its density

p(x, µ) =
1√

2πσ0

exp

(
−(x− µ)2

2σ2
0

)
= exp

{
xµ

σ2
0

− µ2

2σ2
0

−
(
x2

2σ2
0

+ log
√

2πσ0

)}
= exp (T (x)c(θ) + d(θ) + S(x)) .
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Example 13. Let Pθ = {Binomial(n, θ)}. Then,

p(x, θ) =

(
n

x

)
θx(1− θ)n−x

= exp

{
x log

θ

1− θ
+ n log(1− θ) + log

(
n

x

)}
= exp {T (x)c(θ) + d(θ) + S(x)} .

Definition: The family of distributions of a model {Pθ : θ ∈ Θ} is said to be a

one-parameter exponential one if

p(x, θ) = exp{c(θ)T (x) + d(θ) + S(x)}.

Example 14. Let X ∼ Unif(0, θ). Then

p(x, θ) =
1

θ
I[0,θ](x) = exp(log I[0,θ](x)− log θ),

not an exponential family. Another example is

p(x, θ) =
1

9
I(x ∈ {0.1 + θ, · · · , 0.9 + θ}).
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By setting c(θ) = η, the exponential family can be written in the canonical form

as

p(x, η) = exp(ηT (x) + d0(η) + S(x)),

where d0(η) = d(c−1(η)), when c(θ) is one-to-one.

η — canonical (natural) parameter and

c(·) — canonical link,

Examples of canonical link functions:

Normal c(θ) = θ identity

Binomial c(θ) = log θ
1−θ logit

Poisson c(θ) = log θ logarithm.

Regeneration properties:

1. Let X1, · · · , Xn ∼ i.i.d.Pθ, belonging to an exponential family. Then, the joint

density Πn
i=1p(xi, θ) is also in the exponential family. Further,

∑n
i=1 T (Xi) is a

sufficient statistic.
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2. If X ∼ Pθ which is exponential family, and {Qθ} be the distribution of T (X),

Then, {Qθ} is also in the exponential family.

Theorem 3 If X ∼ exp{ηT (X) + d0(η) + S(x)}, η is an interior of E, then

ψ(s) = E exp{sT (X)} = exp[d0(η)− d0(s + η)], for s near 0

Moreover, ET (X) = −d′0(η), var(T (x)) = −d′′0(η). (The function d0 is con-

vave.)

Proof: Note that ∫ +∞

−∞
exp{ηT (x) + d0(η) + S(x)} dx = 1,

=⇒
∫ +∞

−∞
exp{ηT (x) + S(x)} dx = exp (−d0(η)).
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Now,

ψ(s) = E{exp(sT (x))}

=

∫ +∞

−∞
exp{sT (x) + ηT (x) + d0(η) + S(x)} dx

= exp(d0(η)− d0(η + s)).

From the properties of the moment generating function,

ψ′(s)|s=0 = E{T (X) exp(sT (X))|s=0}

= ET (X)

= − exp(d0(η)− d0(η + s))d′0(η + s)|s=0.

Similarly,

ET 2(X) = ψ′′(s)|s=0 = −d′′0(η) + d′0(η)
2

=⇒ var(T (X)) = −d′′0(η).
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Example 15. X1, · · · , Xn ∼ i.i.d.

p(x, θ) = kθ(θx)k−1 exp(−(θx)k), x > 0.

— Weibull distribution =⇒model “failure time” with hazard risk: f(t)
1−F (t) = kθ(θt)k−1

k = 1 =⇒ exponential distribution — constant risk

k = 2 =⇒ Raleigh distribution — kθ2t (linear risk)

Then, the joint density

p(x, θ) = Πn
i=1kθ(θxi)

k−1 exp(−θkxki )

= exp(−θk
n∑
i=1

xki − nk log θ +

n∑
i=1

log xk−1
i + n log k).

For this family of distributionm,

η = −θk

d0(η) = −n log θk = −n log(−η).
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Hence,
n∑
i=1

Xk
i — natural sufficient statistic,

E
n∑
i=1

Xk
i =

−n
η

=
n

θk
,

var(

n∑
i=1

Xk
i ) =

n

η2
=

n

θ2k
.

Direct computation of these moments are more complicated.

The k parameter case

A family of distributions {Pθ : θ ∈ Θ} is said to be k parameter exponential

family if its joint density admits the form

p(x, θ) = exp(

k∑
i=1

Ci(θ)Ti(x) + d(θ) + S(x))

= exp(

k∑
i=1

ηiTi(x) + d0(η)).
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By the factorization theorem, the vector T (x) = (T1(x), · · · , Tk(x)) is a sufficient

statistic.

Suppose that X1, · · · ,Xn are a random sample from Pθ. Put X = (X1, · · · ,Xn)

which is available data.

Then, the distribution of X forms a k-parametric family with

T (X) = (

n∑
i=1

T1(Xi), · · · ,
n∑
i=1

Tk(Xi))

Let ψ(s) = E exp(sTT (x)). Then,

ψ(s) = exp(d0(η)− d0(η + s))

ET (x) = −d′0(η)— mean vector

var(T (x)) = −d′′0(η) — variance-covariance matrix

Example 16. (Multinomial trails)

P (Xi = j) = pj = Πk
`=1p

I(j=`)
`
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Figure 1.12: Multinomial trial. Each outcome is a k-dimensional unit vector, indicting which category is observed.

Πn
i=1P (xi, p) = Πk

i=1Π
n
`=1p

I(xi=`)
` = Πk

`=1p
n`
` .

n` =

n∑
i=1

I(xi = `) — ] of times observing `

The joint density is

p(x,p) = exp{
k∑
`=1

n` log p`}

= exp{
k−1∑
`=1

n` log
p`
pk

+ n log pk}.
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Let αj = log pj − log pk, j = 1, · · · , k − 1. Then

pk = 1− p1 − · · · − pk−1 = 1− pk

k−1∑
j=1

eαj

=⇒ pk =
1

1 +
∑k−1

j=1 e
αj

Hence,

p(x,p) = exp
{k−1∑
`=1

n`α` − n log(1 +

k−1∑
j=1

eαj)
}
.

The variance and covariance matrix of (n1, · · · , nk) can easily be completed.

Other Examples: — Multivariate normal distributions

— Dirichlet distribution (multivariate β-distribution):

cxβ1−1
1 · · ·xβp−1

p (1− x1 − · · · − xp)
βp+1−1.


