AI & ML Confernce Papers
- Li, Z., Cao, Y., Gao, C., He, Y., Liu, H., Klusowski, J., Fan, J., Wang, M. (2024).
One-Layer Transformer Provably Learns One-Nearest Neighbor In Context.
Neural Information Processing Systems (NeurIPS'24) - Gao, C., Cao, Y., Li, Z., He, Y., Wang, M., Liu, H., Klusowski, J., and Fan (2024).
Global Convergence in Training Large-Scale Transformers
Neural Information Processing Systems (NeurIPS'24). - Ge, J., Mukherjee, D., and Fan, J. (2024).
Optimal Aggregation of Prediction Intervals under Unsupervised Domain Shift
Neural Information Processing Systems (NeurIPS'24). - Ge, J., Tang, S., Fan, J. and Jin, C. (2024).
On the Provable Advantage of Unsupervised Pretraining.
International Conference on Learning Representations (ICLR 2024). - Ge, J., Tang, S., Fan, J., Ma, C., and Jin, C. (2024).
Maximum Likelihood Estimation is All You Need for Well-Specified Covariate Shift.
International Conference on Learning Representations (ICLR 2024). - Fan, Z., Wei, Z., Li, Z., Wang, S., Shan, H., Huang, X., Fan, J. (2022).
Constructing Phrase-level Semantic Labels to Form Multi-Grained Supervision for Image-Text Retrieval.
ICMR'22: Proceedings of the 2022 International Conference on Multimedia Retrieval, 137-145. - Wang, B., Yan, Y., and Fan, J. (2021).
Sample-efficient reinforcement learning for linearly-parameterized MDPs with a generative model.
Neural Information Processing Systems (NeurIPS'21) - Zhang, J., Wei, Z., Fan, J., Peng, J. (2021).
Curriculum Learning for Vision-and-Language Navigation.
Neural Information Processing Systems (NeurIPS'21) - Fan, J., Wang, Z., Xie, Y., and Yang, Z. (2020, July).
A theoretical analysis of deep Q-learning.
In Learning for Dynamics and Control (pp. 486-489). PMLR. - Fan, J., Gong, W, Li, J., and Sun, Q. (2018).
Statistical sparse online regression: A dffusion approximation perspective.
Proceedings of Machine Learning Research (AISTATS 2018), 84,
AI & ML Interdisciplinary Applications
- Fan, J., Ke, Z., Liao, Y., and Neuhierl (2022).
Structural Deep Learning in Conditional Asset Pricing.
Journal of Finance, under revision. - Ait-Sahalia, Y., Fan, J., Xue, L., and Zhou, Y. (2022).
How and When are High-Frequency Stock Returns Predictable?
Management Science under revision. - Fan J., Liu, Q., and Zheng, K. (2025).
Unearthing Financial Statement Fraud: Insights from News Coverage Analysis.
Management Science, to appear. - Chen, M., Mei, S., Fan, J. and Wang, M. (2024).
Opportunities and Challenges of Diffusion Models for Generative AI.
National Science Review, 11 (12), nwae348. - Fan, J., Xue, L., and Zhou, Y. (2024).
How much can machines learn finance from Chinese text data?
Management Science, 70 (12), 8962–8987 Manuscript - Almeida, C., Fan, J., Freire, G., and Tang, F. (2023).
Can a Machine Correct Option Pricing Models?
Journal of Business and Economics Statistics, 41, 995-1009. - Zhou, Y., Xue, L., Shi, Z., Wu, L., and Fan, J. (2022).
Measuring housing vitality from multi-source big data and machine learning.
Journal of American Statistical Association, 117, 1045-1059 Manuscript - Fan, J., Ke, Y., and Liao, Y. (2021).
Augmented Factor Models with Applications to Validating Market Risk Factors and Forecasting Bond Risk Premia.
Journal of Econometrics , 22, 269-294. Manuscript - Chiang, C.H., Dai, W., Fan, J., Hong, H.G., Tu, J. (2019).
Robust Measures of Earnings Surprisess.
Journal of Finance , 74, 943-983. Manuscript - Fan, J., Furger, A., and Xiu, D. (2016).
Incorporating global industrial classification standard into portfolio allocation: A simple factor-based large covariance matrix estimator with high frequency data.
Journal of Business and Economics Statistics, 34, 489-503. Manuscript - Fan, J., Liao, Y. and Yao, J. (2015).
Power Enhancement in High Dimensional Cross-Sectional Tests.
Econometrica , 83, 1497-1541
An older version: Large panel test of factor pricing models. - Ait-Sahalia, Y., Fan, J., and Li, Y. (2013).
The leverage effect puzzle: disentangling sources of bias in high frequency inference.
Journal of Financial Economics 109, 224-249. (Manuscript)
Vast portfolio selection with gross-exposure constraints.
Journal of American Statistical Association, 107, 592-606. (Manuscript) - Fan, J. and Mancini, L. (2009).
Option Pricing with aggregation of physical models and nonparametric statistical learning.
Journal of American Statistical Association, 104, 1351-1372.
Manuscript.